Page 19 - TOP ONE ADDMATHS TG4
P. 19

Additional Mathematics  Form 4  Chapter 2 Quadratic Functions

                                   2
               4.  A quadratic equation  x  + 3(x –  p) = 0, where  p is a   (b)  Find the minimum or maximum value of the quadratic
                 constant, has the roots q and –2q, q ≠ 0.                function f(x).
                 Persamaan kuadratik x  + 3(x – p) = 0, dengan keadaan p ialah      Cari nilai minimum atau maksimum fungsi kuadratik f(x).
                                 2
                 pemalar, mempunyai punca-punca q dan –2q, q ≠ 0.                                                [1]
                                                                                               2
                 (a)  Find the values of p and q.                     (c)  Sketch the graph of f(x) = x  – x – 12 for –4 < x < 5.
                                                                                        2
                    Cari nilai-nilai p dan q.                             Lakar graf f(x) = x  – x – 12 untuk –4 < x < 5.
                                                            [4]                                                  [4]
                 (b)  Hence, form a quadratic equation which has the roots   (d)  State the equation of the curve when the graph is
                    p – 3 and p + 1.                                      reflected about the x-axis.
                    Seterusnya, bentuk satu persamaan kuadratik yang      Nyatakan persamaan lengkung apabila graf tersebut
                    mempunyai punca-punca p – 3 dan p + 1.                dipantulkan pada paksi-x.
                                                            [3]
                 Ans:  (a)  p = 6, q = 3                                                                         [1]
                     (b)  x  – 10x + 21 = 0                                      1  2   1
                         2
                                                                             
                                                                      Ans:  (a)  x –   2    – 12
                                                                                        4
                                                                                               1
               5.  It is given the quadratic function f(x) = x  – x – 12.           (b)  Minimum value = –12
                                                 2
                                                                                               4
                                        2
                 Diberi fungsi kuadratik f(x) = x  – x – 12.              (c)  Refer to Answer Section
                 (a)  Express f(x) in the form f(x)= a(x + p)  + q.                    1  2    1
                                                  2
                                                                                   
                                                                                                          2
                    Ungkapkan f(x) dalam bentuk f(x) = a(x + p)  + q.          (d)  f(x) = – x –   2    + 12  or f(x) = –x  + x + 12
                                                      2
                                                                                               4
                                                            [2]
                      HOTS Challenge
                1.  The diagram shows a right-angled triangle PQR.   HOTS  Applying
                  Rajah di sebelah menunjukkan sebuah segi tiga bersudut tegak PQR.  P
                  (a)  Find the value of x. Give your answer correct to four significant figures.  (2x + 3) cm
                      Cari nilai x. Berikan jawapan anda betul kepada empat angka bererti.  (x – 2) cm
                  (b)  By using the value of x obtained in 1(a), calculate the area, in cm , of
                                                                        2
                      the right-angled triangle PQR.
                      Dengan menggunakan nilai x yang diperoleh di 1(a), hitung luas, dalam cm ,    Q  (2x + 1) cm  R
                                                                            2
                      segi tiga bersudut tegak PQR.
                  Answer Guide
                   Use Pythagoras’ theorem to find the value of x.
                   Gunakan teorem Pythagoras untuk mencari nilai x.

                  Ans:  (a)  x = 12.32
                       (b)  132.30 cm 2

                                                                                                 6q + 1
                2.  It is given the quadratic function f(x) = px  – 3x + q can be expressed in the form f(x) = p(x –  )  +   .
                                                                                            3 2
                                                   2
                                                                                            4      4p
                  Find   HOTS  Applying
                                                                                    3    6q + 1
                  Diberi fungsi kuadratik f(x) = px  – 3x + q boleh diungkapkan dalam bentuk f(x) = p(x –   4  )  +   4p  . Cari
                                          2
                                                                                      2
                  (a)  the values of p and q,
                      nilai-nilai p dan q,
                  (b)  the range of values of x if f(x) > 4.
                      julat nilai x jika f(x) > 4.
                  Answer Guide
                   Express the function in vertex form using ‘completing the square’ method.
                   Ungkapkan fungsi itu dalam bentuk verteks dengan menggunakan kaedah penyempurnaan kuasa dua.

                  Ans:  (a)  p = 2, q = 5
                              1
                       (b)  x <   or x > 1
                              2








             © Penerbitan Pelangi Sdn. Bhd.                    34





       02 TOP 1 + MATH F4.indd   34                                                                             20/12/2019   9:34 AM
   14   15   16   17   18   19   20