Page 205 - 30105-2003 การวิเคราะห์วงจรอิเล็กทรอนิกส์ความถี่สูง
P. 205

197
                     5.




                       .     ก  Z =  JX 1 , Z =  JX !
  Z = JX
                                                    3
                                       2
                                             2
                               1
                                                          3
                                                0 =  r b e ′  ( JX +  JX +  JX 3 ) +  JX 1 ( JX +  JX +  g r JX 2 )
                                                                                          m b e ′
                                                                                2
                                                                                     3
                                                               2
                                                          1
                                                                         2
                                                                         0 =  Jr b e ′  ( X +  X +  X 3 ) +  J X 1 ( X +  X +  g r X 2  )
                                                                                        m b e ′
                                                          1
                                                                               2
                                                               2
                                                                                   3
                                                0 =  Jr b e ′  ( X +  X +  X 3 ) −  X 1 ( X +  X +  g r X 2  )
                                                                                     m b e ′
                                                          1
                                                               2
                                                                                 3
                                                                             2
                                                        0 =  Jr b e ′  ( X +  X +  X 3 ) −  X 1  { X  2 (1 g r+  m b e ′  ) +  X 3 }        (5.4)
                                                          1
                                                               2
                       ก  ก   (5.4)        	  G ,  3   ก  $     &( &        0 !   
*          . &( &

                         ก	 ก
                                                                           0 =  Jr b e ′  ( X +  X +  X 3 )
                                                               2
                                                          1
                         Jr
                         b e ′
                                                                         0 =  X +  X + X                                                           (5.4a)
                                                              3
                                                     1
                                                          2
                       ก  ก   (5.4)         	  3   ก  $     &(  g r *

                                                                 m b e ′
                                                                           0 = − X 1  { X 2  (1 g r+  m b e ′  ) +  X 3 }
                          X
                        −
                           1
                                                                          0 =  X 2  (1 g r+  m b e ′  ) +  X 3                              (5.4b)
                                                              X = −  X 3                                                                         (5.5)
                                                2
                                                     (1 g r+  m b e ′  )
                                                                  .
                       ก  ก   (5.5) X    (  3 	 ก " X 0      ก  &       
" !
  X  2  < −X
                                                                                        3
                                     2
                                                     3
                       ก  ก   (5.5)!  &(     ก   (5.4a)

                                                            X
                                                0 =  X −     3    +  X 3
                                                     1
                                                          +
                                                        (1 g r   )
                                                             m b e ′
                                                       X
                                                                      X =  3  −  X 3
                                                 1
                                                    (1 g r+  m b e ′  )
                                                    X −  X  (1 g r+  )  X −  X −  X g r
                                               X =   3    3     m b e ′  =  3  3  3 m b e ′
                                                 1
                                                                             +
                                                         +
                                                       (1 g r   )          (1 g r   )
                                                                                m b e ′
                                                            m b e ′
                                                         g r
                                                      X  ( m b e ′  )
                                                                      X = −  3                                                                         (5.6)
                                                 1
                                                      (1 g r+  m b e ′  )
                                                            < −X
                       ก  ก   (5.6) X    (  3 	 ก " X !
  X
                                     1              3      1     3
                                                                                  ก         	
    
    ก  
  ก
   200   201   202   203   204   205   206   207   208   209   210