Page 188 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 188

144.e2  Part II  Cellular Basis of Hematology


         51.  Gong Y, Hart E, Shchurin A, et al: Inflammatory macrophage migra-  75.  Bain CC, Bravo-Blas A, Scott CL, et al: Constant replenishment from
            tion requires MMP-9 activation by plasminogen in mice. J Clin Invest   circulating monocytes maintains the macrophage pool in the intestine
            118(9):3012–3024, 2008.                               of adult mice. Nat Immunol 15(10):929–937, 2014.
         52.  Khandoga A, Kessler JS, Hanschen M, et al: Matrix metalloproteinase-9   76.  Hoeffel G, Wang Y, Greter M, et al: Adult Langerhans cells derive pre-
            promotes  neutrophil  and  T  cell  recruitment  and  migration  in  the   dominantly from embryonic fetal liver monocytes with a minor contri-
            postischemic liver. J Leukoc Biol 79(6):1295–1305, 2006.  bution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181,
         53.  Parks WC, Wilson CL, Lopez-Boado YS: Matrix metalloproteinases as   2012.
            modulators of inflammation and innate immunity. Nat Rev Immunol   77.  Hashimoto D, Chow A, Noizat C, et al: Tissue-resident macrophages
            4(8):617–629, 2004.                                   self-maintain locally throughout adult life with minimal contribution
         54.  Hadler-Olsen E, Fadnes B, Sylte I, et al: Regulation of matrix metal-  from circulating monocytes. Immunity 38(4):792–804, 2013.
            loproteinase activity in health and disease. FEBS J 278(1):28–45, 2010.  78.  Sumagin R, Prizant H, Lomakina E, et al: LFA-1 and Mac-1 define char-
         55.  Koenen RR, Pruessmeyer J, Soehnlein O, et al: Regulated release and   acteristically  different  intralumenal  crawling  and  emigration  patterns
            functional modulation of junctional adhesion molecule A by disintegrin   for monocytes and neutrophils in situ. J Immunol 185(11):7057–7066,
            metalloproteinases. Blood 113(19):4799–4809, 2009.    2010.
         56.  Denney  H,  Clench  MR,  Woodroofe  MN:  Cleavage  of  chemokines   79.  Feng D, Nagy JA, Pyne K, et al: Neutrophils emigrate from venules
            CCL2 and CXCL10 by matrix metalloproteinases-2 and -9: implica-  by  a  transendothelial  cell  pathway  in  response  to  FMLP.  J  Exp  Med
            tions for chemotaxis. Biochem Biophys Res Commun 382(2):341–347,   187(6):903–915, 1998.
            2009.                                              80.  Schulte D, Kuppers V, Dartsch N, et al: Stabilizing the VE-cadherin-
         57.  Greenlee KJ, Corry DB, Engler DA, et al: Proteomic identification of   catenin  complex  blocks  leukocyte  extravasation  and  vascular  perme-
            in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mecha-  ability. EMBO J 30(20):4157–4170, 2011.
            nism for resolution of inflammation. J Immunol 177(10):7312–7321,   81.  Cernuda-Morollon E, Gharbi S, Millan J: Discriminating between the
            2006.                                                 paracellular  and  transcellular  routes  of  diapedesis.  Methods  Mol  Biol
         58.  Petit  I,  Szyper-Kravitz  M,  Nagler  A,  et al:  G-CSF  induces  stem  cell   616:69–82, 2010.
            mobilization  by  decreasing  bone  marrow  SDF-1  and  up-regulating   82.  Langer HF, Chavakis T: Leukocyte-endothelial interactions in inflam-
            CXCR4. Nat Immunol 3(7):687–694, 2002.                mation. J Cell Mol Med 13(7):1211–1220, 2009.
         59.  Lapidot T,  Petit  I:  Current  understanding  of  stem  cell  mobilization:   83.  Carman CV, Sage PT, Sciuto TE, et al: Transcellular diapedesis is initi-
            the  roles  of  chemokines,  proteolytic  enzymes,  adhesion  molecules,   ated by invasive podosomes. Immunity 26(6):784–797, 2007.
            cytokines, and stromal cells. Exp Hematol 30(9):973–981, 2002.  84.  Carman CV, Springer TA: A transmigratory cup in leukocyte diapedesis
         60.  Alon R, Ley K: Cells on the run: shear-regulated integrin activation in   both through individual vascular endothelial cells and between them. J
            leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol   Cell Biol 167(2):377–388, 2004.
            20(5):525–532, 2008.                               85.  Nieminen  M,  Henttinen  T,  Merinen  M,  et al:  Vimentin  function
         61.  Vestweber  D:  Adhesion  and  signaling  molecules  controlling  the   in  lymphocyte  adhesion  and  transcellular  migration.  Nat  Cell  Biol
            transmigration  of  leukocytes  through  endothelium.  Immunol  Rev   8(2):156–162, 2006.
            218:178–196, 2007.                                 86.  Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, et al: Junctional
         62.  Hickey  MJ,  Kubes  P:  Intravascular  immunity:  the  host-pathogen   adhesion  molecule-2 (JAM-2) promotes  lymphocyte  transendothelial
            encounter in blood vessels. Nat Rev Immunol 9(5):364–375, 2009.  migration. Blood 100(7):2479–2486, 2002.
         63.  Muller WA: Mechanisms of leukocyte transendothelial migration. Annu   87.  Schenkel AR, Mamdouh Z, Chen X, et al: CD99 plays a major role
            Rev Pathol 6:323–344, 2011.                           in  the  migration  of  monocytes  through  endothelial  junctions.  Nat
         64.  Nourshargh  S,  Hordijk  PL,  Sixt  M:  Breaching  multiple  barriers:   Immunol 3(2):143–150, 2002.
            leukocyte motility through venular walls and the interstitium. Nat Rev   88.  Bixel MG, Li H, Petri B, et al: CD99 and CD99L2 act at the same site
            Mol Cell Biol 11(5):366–378, 2010.                    as, but independently of, PECAM-1 during leukocyte diapedesis. Blood
         65.  Springer TA: Traffic signals for lymphocyte recirculation and leukocyte   116(7):1172–1184, 2010.
            emigration: the multistep paradigm. Cell 76(2):301–314, 1994.  89.  Wegmann F, Petri B, Khandoga AG, et al: ESAM supports neutrophil
         66.  Middleton  J,  Neil  S,  Wintle  J,  et al:  Transcytosis  and  surface  pre-  extravasation, activation of Rho, and VEGF-induced vascular perme-
            sentation  of  IL-8  by  venular  endothelial  cells.  Cell  91(3):385–395,   ability. J Exp Med 203(7):1671–1677, 2006.
            1997.                                              90.  Woodfin A, Reichel CA, Khandoga A, et al: JAM-A mediates neutro-
         67.  Rot A: Contribution of Duffy antigen to chemokine function. Cytokine   phil transmigration in a stimulus-specific manner in vivo: evidence for
            Growth Factor Rev 16(6):687–694, 2005.                sequential roles for JAM-A and PECAM-1 in neutrophil transmigra-
         68.  Moser M, Bauer M, Schmid S, et al: Kindlin-3 is required for beta2   tion. Blood 110(6):1848–1856, 2007.
            integrin-mediated  leukocyte  adhesion  to  endothelial  cells.  Nat  Med   91.  Nourshargh  S,  Krombach  F,  Dejana  E:  The  role  of  JAM-A  and
            15(3):300–305, 2009.                                  PECAM-1  in  modulating  leukocyte  infiltration  in  inflamed  and
         69.  Phillipson  M,  Heit  B,  Colarusso  P,  et al:  Intraluminal  crawling  of   ischemic tissues. J Leukoc Biol 80(4):714–718, 2006.
            neutrophils  to  emigration  sites:  a  molecularly  distinct  process  from   92.  Scheiermann  C,  Colom  B,  Meda  P,  et al:  Junctional  adhesion
            adhesion in the recruitment cascade. J Exp Med 203(12):2569–2575,   molecule-C  mediates  leukocyte  infiltration  in  response  to  ischemia
            2006.                                                 reperfusion  injury.  Arterioscler  Thromb  Vasc  Biol  29(10):1509–1515,
         70.  Ryschich E, Kerkadze V, Lizdenis P, et al: Active leukocyte crawling in   2009.
            microvessels assessed by digital time-lapse intravital microscopy. J Surg   93.  Snyderman  R,  Goetzl  EJ:  Molecular  and  cellular  mechanisms  of
            Res 135(2):291–296, 2006.                             leukocyte chemotaxis. Science 213(4510):830–837, 1981.
         71.  Wojciechowski JC, Sarelius IH: Preferential binding of leukocytes to   94.  Sixt  M,  Bauer  M,  Lammermann T,  et al:  Beta1  integrins:  zip  codes
            the  endothelial  junction  region  in  venules  in  situ.  Microcirculation   and signaling relay for blood cells. Curr Opin Cell Biol 18(5):482–490,
            12(4):349–359, 2005.                                  2006.
         72.  Auffray C, Fogg D, Garfa M, et al: Monitoring of blood vessels and   95.  Franca-Koh  J,  Devreotes  PN:  Moving  forward:  mechanisms  of  che-
            tissues by a population of monocytes with patrolling behavior. Science   moattractant gradient sensing. Physiology (Bethesda) 19:300–308, 2004.
            317(5838):666–670, 2007.                           96.  Sanchez-Madrid F, Serrador JM: Bringing up the rear: defining the roles
         73.  Carlin  LM,  Stamatiades  EG,  Auffray  C,  et al:  Nr4a1-dependent   of the uropod. Nat Rev Mol Cell Biol 10(5):353–359, 2009.
            Ly6C(low) monocytes monitor endothelial cells and orchestrate their   97.  Tanino  Y,  Coombe  DR,  Gill  SE,  et al:  Kinetics  of  chemokine-
            disposal. Cell 153(2):362–375, 2013.                  glycosaminoglycan interactions control neutrophil migration into the
         74.  Swirski FK, Nahrendorf M, Etzrodt M, et al: Identification of splenic   airspaces of the lungs. J Immunol 184(5):2677–2685, 2010.
            reservoir  monocytes  and  their  deployment  to  inflammatory  sites.   98.  Linhardt  RJ,  Toida  T:  Role  of  glycosaminoglycans  in  cellular  com-
            Science 325(5940):612–616, 2009.                      munication. Acc Chem Res 37(7):431–438, 2004.
   183   184   185   186   187   188   189   190   191   192   193