Page 188 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 188
144.e2 Part II Cellular Basis of Hematology
51. Gong Y, Hart E, Shchurin A, et al: Inflammatory macrophage migra- 75. Bain CC, Bravo-Blas A, Scott CL, et al: Constant replenishment from
tion requires MMP-9 activation by plasminogen in mice. J Clin Invest circulating monocytes maintains the macrophage pool in the intestine
118(9):3012–3024, 2008. of adult mice. Nat Immunol 15(10):929–937, 2014.
52. Khandoga A, Kessler JS, Hanschen M, et al: Matrix metalloproteinase-9 76. Hoeffel G, Wang Y, Greter M, et al: Adult Langerhans cells derive pre-
promotes neutrophil and T cell recruitment and migration in the dominantly from embryonic fetal liver monocytes with a minor contri-
postischemic liver. J Leukoc Biol 79(6):1295–1305, 2006. bution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181,
53. Parks WC, Wilson CL, Lopez-Boado YS: Matrix metalloproteinases as 2012.
modulators of inflammation and innate immunity. Nat Rev Immunol 77. Hashimoto D, Chow A, Noizat C, et al: Tissue-resident macrophages
4(8):617–629, 2004. self-maintain locally throughout adult life with minimal contribution
54. Hadler-Olsen E, Fadnes B, Sylte I, et al: Regulation of matrix metal- from circulating monocytes. Immunity 38(4):792–804, 2013.
loproteinase activity in health and disease. FEBS J 278(1):28–45, 2010. 78. Sumagin R, Prizant H, Lomakina E, et al: LFA-1 and Mac-1 define char-
55. Koenen RR, Pruessmeyer J, Soehnlein O, et al: Regulated release and acteristically different intralumenal crawling and emigration patterns
functional modulation of junctional adhesion molecule A by disintegrin for monocytes and neutrophils in situ. J Immunol 185(11):7057–7066,
metalloproteinases. Blood 113(19):4799–4809, 2009. 2010.
56. Denney H, Clench MR, Woodroofe MN: Cleavage of chemokines 79. Feng D, Nagy JA, Pyne K, et al: Neutrophils emigrate from venules
CCL2 and CXCL10 by matrix metalloproteinases-2 and -9: implica- by a transendothelial cell pathway in response to FMLP. J Exp Med
tions for chemotaxis. Biochem Biophys Res Commun 382(2):341–347, 187(6):903–915, 1998.
2009. 80. Schulte D, Kuppers V, Dartsch N, et al: Stabilizing the VE-cadherin-
57. Greenlee KJ, Corry DB, Engler DA, et al: Proteomic identification of catenin complex blocks leukocyte extravasation and vascular perme-
in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mecha- ability. EMBO J 30(20):4157–4170, 2011.
nism for resolution of inflammation. J Immunol 177(10):7312–7321, 81. Cernuda-Morollon E, Gharbi S, Millan J: Discriminating between the
2006. paracellular and transcellular routes of diapedesis. Methods Mol Biol
58. Petit I, Szyper-Kravitz M, Nagler A, et al: G-CSF induces stem cell 616:69–82, 2010.
mobilization by decreasing bone marrow SDF-1 and up-regulating 82. Langer HF, Chavakis T: Leukocyte-endothelial interactions in inflam-
CXCR4. Nat Immunol 3(7):687–694, 2002. mation. J Cell Mol Med 13(7):1211–1220, 2009.
59. Lapidot T, Petit I: Current understanding of stem cell mobilization: 83. Carman CV, Sage PT, Sciuto TE, et al: Transcellular diapedesis is initi-
the roles of chemokines, proteolytic enzymes, adhesion molecules, ated by invasive podosomes. Immunity 26(6):784–797, 2007.
cytokines, and stromal cells. Exp Hematol 30(9):973–981, 2002. 84. Carman CV, Springer TA: A transmigratory cup in leukocyte diapedesis
60. Alon R, Ley K: Cells on the run: shear-regulated integrin activation in both through individual vascular endothelial cells and between them. J
leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol Cell Biol 167(2):377–388, 2004.
20(5):525–532, 2008. 85. Nieminen M, Henttinen T, Merinen M, et al: Vimentin function
61. Vestweber D: Adhesion and signaling molecules controlling the in lymphocyte adhesion and transcellular migration. Nat Cell Biol
transmigration of leukocytes through endothelium. Immunol Rev 8(2):156–162, 2006.
218:178–196, 2007. 86. Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, et al: Junctional
62. Hickey MJ, Kubes P: Intravascular immunity: the host-pathogen adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial
encounter in blood vessels. Nat Rev Immunol 9(5):364–375, 2009. migration. Blood 100(7):2479–2486, 2002.
63. Muller WA: Mechanisms of leukocyte transendothelial migration. Annu 87. Schenkel AR, Mamdouh Z, Chen X, et al: CD99 plays a major role
Rev Pathol 6:323–344, 2011. in the migration of monocytes through endothelial junctions. Nat
64. Nourshargh S, Hordijk PL, Sixt M: Breaching multiple barriers: Immunol 3(2):143–150, 2002.
leukocyte motility through venular walls and the interstitium. Nat Rev 88. Bixel MG, Li H, Petri B, et al: CD99 and CD99L2 act at the same site
Mol Cell Biol 11(5):366–378, 2010. as, but independently of, PECAM-1 during leukocyte diapedesis. Blood
65. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte 116(7):1172–1184, 2010.
emigration: the multistep paradigm. Cell 76(2):301–314, 1994. 89. Wegmann F, Petri B, Khandoga AG, et al: ESAM supports neutrophil
66. Middleton J, Neil S, Wintle J, et al: Transcytosis and surface pre- extravasation, activation of Rho, and VEGF-induced vascular perme-
sentation of IL-8 by venular endothelial cells. Cell 91(3):385–395, ability. J Exp Med 203(7):1671–1677, 2006.
1997. 90. Woodfin A, Reichel CA, Khandoga A, et al: JAM-A mediates neutro-
67. Rot A: Contribution of Duffy antigen to chemokine function. Cytokine phil transmigration in a stimulus-specific manner in vivo: evidence for
Growth Factor Rev 16(6):687–694, 2005. sequential roles for JAM-A and PECAM-1 in neutrophil transmigra-
68. Moser M, Bauer M, Schmid S, et al: Kindlin-3 is required for beta2 tion. Blood 110(6):1848–1856, 2007.
integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 91. Nourshargh S, Krombach F, Dejana E: The role of JAM-A and
15(3):300–305, 2009. PECAM-1 in modulating leukocyte infiltration in inflamed and
69. Phillipson M, Heit B, Colarusso P, et al: Intraluminal crawling of ischemic tissues. J Leukoc Biol 80(4):714–718, 2006.
neutrophils to emigration sites: a molecularly distinct process from 92. Scheiermann C, Colom B, Meda P, et al: Junctional adhesion
adhesion in the recruitment cascade. J Exp Med 203(12):2569–2575, molecule-C mediates leukocyte infiltration in response to ischemia
2006. reperfusion injury. Arterioscler Thromb Vasc Biol 29(10):1509–1515,
70. Ryschich E, Kerkadze V, Lizdenis P, et al: Active leukocyte crawling in 2009.
microvessels assessed by digital time-lapse intravital microscopy. J Surg 93. Snyderman R, Goetzl EJ: Molecular and cellular mechanisms of
Res 135(2):291–296, 2006. leukocyte chemotaxis. Science 213(4510):830–837, 1981.
71. Wojciechowski JC, Sarelius IH: Preferential binding of leukocytes to 94. Sixt M, Bauer M, Lammermann T, et al: Beta1 integrins: zip codes
the endothelial junction region in venules in situ. Microcirculation and signaling relay for blood cells. Curr Opin Cell Biol 18(5):482–490,
12(4):349–359, 2005. 2006.
72. Auffray C, Fogg D, Garfa M, et al: Monitoring of blood vessels and 95. Franca-Koh J, Devreotes PN: Moving forward: mechanisms of che-
tissues by a population of monocytes with patrolling behavior. Science moattractant gradient sensing. Physiology (Bethesda) 19:300–308, 2004.
317(5838):666–670, 2007. 96. Sanchez-Madrid F, Serrador JM: Bringing up the rear: defining the roles
73. Carlin LM, Stamatiades EG, Auffray C, et al: Nr4a1-dependent of the uropod. Nat Rev Mol Cell Biol 10(5):353–359, 2009.
Ly6C(low) monocytes monitor endothelial cells and orchestrate their 97. Tanino Y, Coombe DR, Gill SE, et al: Kinetics of chemokine-
disposal. Cell 153(2):362–375, 2013. glycosaminoglycan interactions control neutrophil migration into the
74. Swirski FK, Nahrendorf M, Etzrodt M, et al: Identification of splenic airspaces of the lungs. J Immunol 184(5):2677–2685, 2010.
reservoir monocytes and their deployment to inflammatory sites. 98. Linhardt RJ, Toida T: Role of glycosaminoglycans in cellular com-
Science 325(5940):612–616, 2009. munication. Acc Chem Res 37(7):431–438, 2004.

