Page 1507 - Williams Hematology ( PDFDrive )
P. 1507

1482           Part X:  Malignant Myeloid Diseases                                                                                                   Chapter 89:  Chronic Myelogenous Leukemia and Related Disorders             1483




                 527.  Michor F, Hughes TP, Iwasa Y, et al: Dynamics of chronic myeloid leukaemia. Nature     555.  Carter BZ, Mak DH, Schober WD, et al: Regulation of survivin expression through
                   435:1267, 2005.                                        Bcr-Abl/MAPK cascade: Targeting survivin overcomes imatinib resistance and
                 528.  Zhang WW, Cortes JE, Yao  H, et al:  Predictors of  primary imatinib resistance  in   increases imatinib sensitivity in imatinib-responsive CML cells. Blood 107:1555, 2006.
                   chronic myelogenous leukemia are distinct from those in secondary imatinib resis-    556.  Wu J, Meng F, Kong LY, et al: Association between imatinib-resistant BCR-ABL
                   tance. J Clin Oncol 27:3642, 2009.                     mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer
                 529.  White DL, Saunders VA, Dang P, et al: OCT-1-mediated influx is a key determinant   Inst 100:926, 2008.
                   of the intracellular uptake of imatinib but not nilotinib (AMN107): Reduced OCT-1     557.  Hochhaus A, Erben P, Ernst T, Mueller MC: Resistance to targeted therapy in chronic
                   activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697, 2006.  myelogenous leukemia. Semin Hematol 44:S15, 2007.
                 530.  Hiwase DK, Saunders V, Hewett D, et al: Dasatinib cellular uptake and efflux in     558.  Feller SM, Tuchscherer G, Voss J: High affinity molecular disruption of GRB2 protein
                   chronic myeloid leukemia cells: Therapeutic implications. Clin Cancer Res 14:3881,   complexes as a therapeutic strategy for chronic myelogenous leukemia. Leuk Lym-
                   2008.                                                  phoma 44:411, 2003.
                 531.  White DL, Dang P, Engler J, et al: Functional activity of the OCT-1 protein is predic-    559.  Hochhaus A: Cytogenetic and molecular mechanisms of resistance to imatinib. Semin
                   tive of long-term outcome in patients with chronic-phase chronic myeloid leukemia   Hematol 40:69, 2003.
                   treated with imatinib. J Clin Oncol 28:2761, 2010.    560.  Ohno R, Nakamura Y: Prediction of response to imatinib by cDNA microarray analy-
                 532.  Jordanides NE, Jorgensen HG, Holyoake TL, et al: Functional ABCG2 is overex-  sis. Semin Hematol 40:42, 2003.
                   pressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood     561.  Cortes J, Kantarjian H: Beyond dose escalation: Clinical options for relapse or resis-
                   108:1370, 2006.                                        tance in chronic myelogenous leukemia. J Natl Compr Canc Netw 6 Suppl 2:S22, 2008.
                 533.  Ossard-Receveur A, Bernheim A, Clausse B, et al: Duplication of the Ph-chromosome     562.  Soverini S, Hochhaus A, Nicolini FE, et al: BCR-ABL kinase domain mutation analysis
                   as a possible mechanism of resistance to imatinib mesylate in patients with chronic   in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: Rec-
                   myelogenous leukemia. Cancer Genet Cytogenet 163:189, 2005.  ommendations from an expert panel on behalf of European LeukemiaNet.  Blood
                 534.  Szych CM, Liesveld JL, Iqbal MA, et al: Isodicentric Philadelphia chromosomes in   118:1208, 2011.
                   imatinib  mesylate  (Gleevec)-resistant  patients.  Cancer Genet Cytogenet  174:132,     563.  Jabbour E, Kantarjian HM, Saglio G, et al: Early response with dasatinib or imatinib in
                   2007.                                                  chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASI-
                 535.  Khorashad JS, Kelley TW, Szankasi P, et al: BCR-ABL1 Compound mutations in   SION). Blood 123:494, 2014.
                   tyrosine kinase inhibitor-resistant CML: Frequency and clonal relationships. Blood     564.  Martinelli G, Soverini S, Rosti G, Baccarani M: Dual tyrosine kinase inhibitors in
                   121:489, 2013.                                         chronic myeloid leukemia. Leukemia 19:1872, 2005.
                 536.  Roche-Lestienne C, Preudhomme C: Mutations in the ABL kinase domain pre-exist     565.  Kantarjian H, Pasquini R, Hamerschlak N, et al: Dasatinib or high-dose imatinib for
                   the onset of imatinib treatment. Semin Hematol 21:80, 2003.  chronic-phase chronic myeloid leukemia after failure of first-line imatinib: A random-
                 537.  Corbin AS, La Rosee P, Stoffregen EP, et al: Several Bcr-Abl kinase domain mutants   ized phase 2 trial. Blood 109:5143, 2007.
                   associated with imatinib mesylate resistance remain sensitive to imatinib.  Blood     566.  Porkka K, Koskenvesa P, Lundán T, et al: Dasatinib crosses the blood–brain barrier
                   101:4611, 2003.                                        and is an efficient therapy for central nervous system Philadelphia chromosome-pos-
                 538.  Khorashad JS, Anand M, Marin D, et al: The presence of a BCR-ABL mutant allele in   itive leukemia. Blood 112:1005, 2008.
                   CML does not always explain clinical resistance to imatinib. Leukemia 20:658, 2006.    567.  Shah NP, Guilhot F, Cortes JE, et al: Long-term outcome with dasatinib after ima-
                 539.  Wei Y, Hardling M, Olsson B, et al: Not all imatinib resistance in CML are BCR-ABL   tinib failure in chronic-phase chronic myeloid leukemia: Follow-up of a phase 3 study.
                   kinase domain mutations. Ann Hematol 85:841, 2006.     Blood 123:2317, 2014.
                 540.  Soverini S, Colarossi S, Gnani A, et al: Contribution of ABL kinase domain mutations     568.  Khoury HJ, Cortes JE, Kantarjian HM, et al: Bosutinib is active in chronic phase
                   to imatinib resistance in different subsets of Philadelphia-positive patients: By the   chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy fail-
                   GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 12:7374,   ure. Blood 119:343, 2012.
                   2006.                                                569.  Ibrahim AR, Pallompeis C, Bua M, et al: Efficacy of tyrosine kinase inhibitors (TKIs)
                 541.  Sherbenou DW, Wong MJ, Humayun A, et al: Mutations of the BCR-ABL-kinase   as third-line therapy in patients with chronic myeloid leukemia in chronic phase who
                   domain occur in a minority of patients with stable complete cytogenetic response to   have failed 2 prior lines of TKI therapy. Blood 116:5497, 2010.
                   imatinib. Leukemia 21:489, 2007.                     570.  Cortes JE, Nicolini FE, Wetzler M, et al: Subcutaneous omacetaxine mepesuccinate
                 542.  Miething  C, Mugler  C, Grundler R,  et al: Phosphorylation of  tyrosine 393  in the   in patients with chronic-phase chronic myeloid leukemia previously treated with 2 or
                   kinase domain of Bcr-Abl influences the sensitivity towards imatinib in vivo. Leuke-  more tyrosine kinase inhibitors including Imatinib. Clin Lymphoma Myeloma Leuk
                   mia 17:1695, 2003.                                     13:584, 2013.
                 543.  Branford S, Rudzki Z, Walsh S, et al: Detection of BRC-ABL mutations in patients     571.  Cortes J, Digumatri R, Parikh PM, et al: Phase 2 study of subcutaneous omacetaxine
                   with CML treated with imatinib is virtually always accompanied by clinical resistance,   mepesuccinate for chronic-phase chronic myeloid leukemia patients resistant to or
                   and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor   intolerant of tyrosine kinase inhibitors. Am J Hematol 88:350, 2013.
                   prognosis. Blood 102:276, 2003.                      572.  Sun X, Layton JE, Elefanty A, Lieschke GJ: Comparison of effects of the tyrosine
                 544.  Nicolini FE, Corm S, Lê QH, et al: Mutation status and clinical outcome of 89 imatinib   kinase inhibitors AG957, AG490, and STI571 on BCR-ABL-expressing cells, demon-
                   mesylate-resistant chronic myelogenous leukemia patients: A retrospective analysis   strating synergy between AG490 and STI571. Blood 97:2008, 2001.
                   from the French intergroup of CML (Fi(phi)-LMC GROUP).  Leukemia 20:1061,     573.  Mohi MG, Boulton C, Gu TL, et al: Combination of rapamycin and protein tyrosine
                   2006.                                                  kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs.
                 545.  Soverini S, De Benedittis C, Machova Polakova K, et al: Unraveling the complexity of   Proc Natl Acad Sci U S A 101:3130, 2004.
                   tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-    574.  Gatto S, Scappini B, Pham L, et al: The proteasome inhibitor PS-341 inhibits growth
                   ABL kinase domain. Blood 122:1634, 2013.               and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib
                 546.  Parker WT, Lawrence RM, Ho M, et al: Sensitive detection of BDR-ABL! Mutations   mesylate. Haematologica 88:853, 2003.
                   in patients with chronic myeloid leukemia after imatinib resistance is predictive of     575.  Dai Y, Rahmani M, Pei XY, et al: Bortezomib and flavopiridol interact synergistically
                   outcome during subsequent therapy. J Clin Oncol 29:4250, 2011.  to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate
                 547.  Vainstein V, Eide CA, O’Hare T, et al: Integrating in vitro sensitivity and dose-response   through both Bcr/Abl-dependent and -independent mechanisms.  Blood 104:509,
                   slope is predictive of clinical response to ABL kinase inhibitors in chronic myeloid   2004.
                   leukemia. Blood 122:3331, 2013.                      576.  Yu C, Rahmani M, Conrad D, et al: The proteasome inhibitor bortezomib interacts
                 548.  Cortes JE, Kim DW, Pinilla-Ibarz J, et al: A phase 2 trial of ponatinib in Philadelphia   synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+
                   chromosome-positive leukemias. N Engl J Med 369:1783, 2013.  cells sensitive and resistant to STI571. Blood 102:3765, 2003.
                 549.  Khorashad JS, Kelley TW, Szankasi P, et al: BCR-ABL1 compound mutations in     577.  Fiskus W, Pranpat M, Bali P, et al: Combined effects of novel tyrosine kinase inhib-
                   tyrosine kinase inhibitor-resistant CML: Frequency and clonal relationships. Blood   itor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing
                   121;489, 2013.                                         human leukemia cells. Blood 108:645, 2006.
                 550.  Quintás-Cardama A, Cortes J: Therapeutic options against BCR-ABL1 T315I-positive     578.  Sawyers CL, Hochhaus A, Feldman E, et al: Imatinib induces hematologic and cytoge-
                   chronic myelogenous leukemia. Clin Cancer Res 14:4392, 2008.  netic responses in patients with chronic myelogenous leukemia in myeloid blast crisis:
                 551.  Jabbour E, Kantarjian H, Jones D, et al: Characteristics and outcomes of patients with   Results of a phase II study. Blood 99:3530, 2002.
                   chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate     579.  Gorre ME, Ellwood-Yen K, Chiosis G, et al: BCR-ABL point mutants isolated from
                   therapy. Blood 112:53, 2008.                           patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive
                 552.  de Lavallade H, Khorashad JS, Davis HP, et al: Interferon-alpha or homoharringtonine   to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100:3041, 2002.
                   as salvage treatment for chronic myeloid leukemia patients who acquire the T315I     580.  Zhao C, Chen A, Jamieson CH, et al: Hedgehog signaling is essential for maintenance
                   BCR-ABL mutation. Blood 110:2779, 2007.                of cancer stem cells in myeloid leukaemia. Nature 458:776, 2009.
                 553.  Jilani I, Kantarjian H, Gorre M, et al: Phosphorylation levels of BCR-ABL, CrkL, AKT     581.  Tipping AJ, Mahon FX, Zafirides G, et al: Drug responses of imatinib mesylate-
                   and STAT5 in imatinib-resistant chronic myeloid leukemia cells implicate alternative   resistant cells: Synergism of imatinib with other chemotherapeutic drugs. Leukemia
                   pathway usage as a survival strategy. Leuk Res 32:643, 2008.  16:2349, 2002.
                 554.  Pocaly M, Lagarde V, Etienne G, et al: Overexpression of the heat-shock protein 70 is     582.  Tipping AJ, Melo JV: Imatinib mesylate in combination with other hemotherapeutic
                   associated to imatinib resistance in chronic myeloid leukemia. Leukemia 21:93, 2007.  drugs: In vitro studies. Semin Hematol 40:83, 2003.







          Kaushansky_chapter 89_p1437-1490.indd   1482                                                                  9/18/15   3:42 PM
   1502   1503   1504   1505   1506   1507   1508   1509   1510   1511   1512