Page 1570 - Williams Hematology ( PDFDrive )
P. 1570

1544  Part XI:  Malignant Lymphoid Diseases                    Chapter 92:  Chronic Lymphocytic Leukemia             1545




                    87.  Flinn IW, Neuberg DS, Grever MR, et al: Phase III trial of fludarabine plus cyclophos-  cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens.
                     phamide  compared  with fludarabine for  patients  with  previously  untreated  chronic   Blood 113:3168–3171, 2009.
                     lymphocytic leukemia: US Intergroup Trial E2997. J Clin Oncol 25:793–798, 2007.    118. Damle RN, Wasil T, Fais F, et al: Ig V gene mutation status and CD38 expression as
                    88.  Bixby D, Kujawski L, Wang S, et al: The pre-clinical development of MDM2 inhibitors   novel prognostic indicators in chronic lymphocytic leukemia.  Blood 94:1840–1847,
                     in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to   1999.
                     MDM2 inhibitor-mediated apoptosis. Cell Cycle 7:971–979, 2008.    119. Byrd JC, Stilgenbauer S, Flinn IW: Chronic lymphocytic leukemia. Hematology Am Soc
                    89.  Cordone I, Masi S, Mauro FR, et al: P53 expression in B-cell chronic lymphocytic leu-  Hematol Educ Program 163–183, 2004.
                     kemia: A marker of disease progression and poor prognosis. Blood 91:4342–4349, 1998.    120. Ghia EM, Jain S, Widhopf GF, 2nd, et al: Use of IGHV3–21 in chronic lymphocytic
                    90.  el Rouby S, Thomas A, Costin D, et al: P53 gene mutation in B-cell chronic lymphocytic   leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal
                     leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene   center leukemogenic selection. Blood 111:5101–5108, 2008.
                     expression. Blood 82:3452–3459, 1993.                121. Baliakas P, Agathangelidis A, Hadzidimitriou A, et al: Not all IGHV3–21 chronic lym-
                    91.  Stephens DM, Ruppert AS, Jones JA, et al: Impact of targeted therapy on outcome of   phocytic leukemias are equal: Prognostic considerations. Blood 125:856–859, 2015.
                     chronic lymphocytic leukemia patients with relapsed del(17p13.1) karyotype at a single     122. Gobessi S, Laurenti L, Longo PG, et al: ZAP-70 enhances B-cell-receptor signaling
                     center. Leukemia 28:1365–1368, 2014.                  despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia
                    92.  Byrd JC, Furman RR, Coutre SE, et al: Targeting BTK with ibrutinib in relapsed chronic   and lymphoma B cells. Blood 109:2032–2039, 2007.
                     lymphocytic leukemia. N Engl J Med 369:32–42, 2013.    123. Crespo M, Bosch F, Villamor N, et al: ZAP-70 expression as a surrogate for immu-
                    93.  Berkova A, Pavlistova L, Babicka L, et al: Combined molecular biological and molecular   noglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med
                     cytogenetic analysis of genomic changes in 146 patients with B-cell chronic lympho-  348:1764–1775, 2003.
                     cytic leukemia. Neoplasma 55:400–408, 2008.          124. Corcoran M, Parker A, Orchard J, et al: ZAP-70 methylation status is associated with
                    94.  Rechavi G, Katzir N, Brok-Simoni F, et al: A search for bcl1, bcl2, and c-myc oncogene   ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 90:1078–
                     rearrangements in chronic lymphocytic leukemia. Leukemia 3:57–60, 1989.  1088, 2005.
                    95.  Cuneo A, Rigolin GM, Bigoni R, et al: Chronic lymphocytic leukemia with 6q- shows     125. Cramer P, Hallek M: Prognostic factors in chronic lymphocytic leukemia—what do we
                     distinct  hematological features  and intermediate prognosis.  Leukemia 18:476–483,   need to know? Nat Rev Clin Oncol 8:38–47, 2011.
                     2004.                                                126. Claus R, Lucas DM, Ruppert AS, et al: Validation of ZAP-70 methylation and its relative
                    96.  Puente XS, Pinyol M, Quesada V, et al: Whole-genome sequencing identifies recurrent   significance in predicting outcome in chronic lymphocytic leukemia. Blood 124:42–48,
                     mutations in chronic lymphocytic leukaemia. Nature 475:101–105, 2011.  2014.
                    97.  Jeromin S, Weissmann S, Haferlach C, et al: SF3B1 mutations correlated to cytogenetics     127. Letestu R, Levy V, Eclache V, et al: Prognosis of Binet stage A chronic lymphocytic
                     and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL   leukemia patients: The strength of routine parameters. Blood 116:4588–4590, 2010.
                     patients. Leukemia 28:108–117, 2014.                 128. Krober A, Seiler T, Benner A, et al: V(H) mutation status, CD38 expression level,
                    98.  Quesada V, Conde L, Villamor N, et al: Exome sequencing identifies recurrent muta-  genomic aberrations, and survival in chronic lymphocytic leukemia.  Blood 100:
                     tions of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet   1410–1416, 2002.
                     44:47–52, 2012.                                      129. Deaglio S, Vaisitti T, Zucchetto A, et al: CD38 as a molecular compass guiding topo-
                    99.  Higgins JP, Warnke RA: Herpes lymphadenitis in association with chronic lymphocytic   graphical decisions of chronic lymphocytic leukemia cells.  Semin Cancer Biol 20:
                     leukemia. Cancer 86:1210–1215, 1999.                  416–423, 2010.
                    100. Sivakumaran M, Qureshi H, Chapman CS: Chylous effusions in CLL. Leuk Lymphoma     130. Damle RN, Temburni S, Calissano C, et al: CD38 expression labels an activated subset
                     18:365–366, 1995.                                     within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood
                    101. Zeidman A, Yarmolovsky A, Djaldetti M, et al: Hemorrhagic pleural effusion as a com-  110:3352–3359, 2007.
                     plication of chronic lymphocytic leukemia. Haematologia (Budap) 26:173–175, 1995.    131. Thunberg U, Johnson A, Roos G, et al: CD38 expression is a poor predictor for VH
                    102. Dhodapkar M, Yale SH, Hoagland HC: Hemorrhagic pleural effusion and pleural thick-  gene mutational status and prognosis in chronic lymphocytic leukemia.  Blood 97:
                     ening as a complication of chronic lymphocytic leukemia. Am J Hematol 42:221–224,   1892–1894, 2001.
                     1993.                                                132. Zucchetto A, Benedetti D, Tripodo C, et al: CD38/CD31, the CCL3 and CCL4 chemok-
                    103. Elliott MA, Letendre L, Li CY, et al: Chronic lymphocytic leukaemia with symptomatic   ines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events
                     diffuse central nervous system infiltration responding to therapy with systemic fludar-  sustaining chronic lymphocytic leukemia cell survival. Cancer Res 69:4001–4009, 2009.
                     abine. Br J Haematol 104:689–694, 1999.              133. Zucchetto A, Bomben R, Dal Bo M, et al: CD49d in B-cell chronic lymphocytic leu-
                    104. Asakura K, Kizaki M, Ikeda Y: Exaggerated cutaneous response to mosquito bites in a   kemia: Correlated expression with CD38 and prognostic relevance.  Leukemia 20:
                     patient with chronic lymphocytic leukemia. Int J Hematol 80:59–61, 2004.  523–525; author reply 528–529, 2006.
                    105. Weed RI: Exaggerated delayed hypersensitivity to mosquito bites in chronic lympho-    134. Bulian P, Shanafelt TD, Fegan C, et al: CD49d is the strongest flow cytometry-based
                     cytic leukemia. Blood 26:257–268, 1965.               predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol 32:897–904,
                    106. Pangalis GA, Roussou PA, Kittas C, et al: Patterns of bone marrow involvement in   2014.
                     chronic lymphocytic leukemia and small lymphocytic (well differentiated) non-     135. Wierda WG, O’Brien S, Wang X, et al: Characteristics associated with important clini-
                     Hodgkin’s lymphoma. Its clinical significance in relation to their differential diagnosis   cal end points in patients with chronic lymphocytic leukemia at initial treatment. J Clin
                     and prognosis. Cancer 54:702–708, 1984.               Oncol 27:1637–1643, 2009.
                    107. Pangalis GA, Roussou PA, Kittas C, et al: B-chronic lymphocytic leukemia. Prognostic     136. Wierda WG, O’Brien S, Wang X, et al: Prognostic nomogram and index for overall
                     implication of bone marrow histology in 120 patients experience from a single hema-  survival in previously untreated patients with chronic lymphocytic leukemia.  Blood
                     tology unit. Cancer 59:767–771, 1987.                 109:4679–4685, 2007.
                    108. Deegan MJ, Abraham JP, Sawdyk M, et al: High incidence of monoclonal proteins in the     137. Gentile M, Mauro FR, Rossi D, et al: Italian external and multicentric validation of the
                     serum and urine of chronic lymphocytic leukemia patients. Blood 64:1207–1211, 1984.  MD Anderson Cancer Center nomogram and prognostic index for chronic lympho-
                    109. Sinclair D, Dagg JH, Dewar AE, et al: The incidence, clonal origin and secretory nature   cytic leukaemia patients: Analysis of 1502 cases. Br J Haematol 167:224–232, 2014.
                     of serum paraproteins in chronic lymphocytic leukaemia. Br J Haematol 64:725–735,     138. Montserrat E, Sanchez-Bisono J, Vinolas N, et al: Lymphocyte doubling time in chronic
                     1986.                                                 lymphocytic leukaemia: Analysis of its prognostic significance.  Br J Haematol 62:
                    110. Pangalis GA, Moutsopoulos HM, Papadopoulos NM, et al: Monoclonal and oligoclonal   567–575, 1986.
                     immunoglobulins in the serum of patients with B-chronic lymphocytic leukemia. Acta     139. Matthews C, Catherwood MA, Morris TC, et al: Serum TK levels in CLL identify
                     Haematol 80:23–27, 1988.                              Binet stage A patients within biologically defined prognostic subgroups most likely to
                    111. Bernstein ZP, Fitzpatrick JE, O’Donnell A, et al: Clinical significance of monoclonal   undergo disease progression. Eur J Haematol 77:309–317, 2006.
                     proteins in chronic lymphocytic leukemia. Leukemia 6:1243–1245, 1992.    140. Magnac C, Porcher R, Davi F, et al: Predictive value of serum thymidine kinase level for
                    112. Shvidel L, Tadmor T, Braester A, et al: Serum immunoglobulin levels at diagnosis have   Ig-V mutational status in B-CLL. Leukemia 17:133–137, 2003.
                     no prognostic significance in stage A chronic lymphocytic leukemia: A study of 1113     141. Hallek M, Langenmayer I, Nerl C, et al: Elevated serum thymidine kinase levels identify
                     cases from the Israeli CLL Study Group. Eur J Haematol 93:29–33, 2014.  a subgroup at high risk of disease progression in early, nonsmoldering chronic lympho-
                    113. Mayr C, Speicher MR, Kofler DM, et al: Chromosomal translocations are associated   cytic leukemia. Blood 93:1732–1737, 1999.
                     with poor prognosis in chronic lymphocytic leukemia. Blood 107:742–751, 2006.    142. Saka B, Aktan M, Sami U, et al: Prognostic importance of soluble CD23 in B-cell
                    114. Dohner H, Stilgenbauer S, Benner A, et al: Genomic aberrations and survival in chronic   chronic lymphocytic leukemia. Clin Lab Haematol 28:30–35, 2006.
                     lymphocytic leukemia. N Engl J Med 343:1910–1916, 2000.    143. Molica S, Vitelli G, Levato D, et al: Elevated serum levels of soluble CD44 can identify
                    115. Stilgenbauer S, Sander S, Bullinger L, et al: Clonal evolution in chronic lymphocytic   a subgroup of patients with early B-cell chronic lymphocytic leukemia who are at high
                     leukemia: Acquisition of high-risk genomic aberrations associated with unmutated   risk of disease progression. Cancer 92:713–719, 2001.
                     VH, resistance to therapy, and short survival. Haematologica 92:1242–1245, 2007.    144. Christiansen I, Sundstrom C, Totterman TH: Elevated serum levels of soluble vascu-
                    116. Kipps TJ, Tomhave E, Chen PP, et al: Autoantibody-associated kappa light chain vari-  lar cell adhesion molecule-1 (sVCAM-1) closely reflect tumour burden in chronic B-
                     able region gene expressed in chronic lymphocytic leukemia with little or no somatic   lymphocytic leukaemia. Br J Haematol 103:1129–1137, 1998.
                     mutation. Implications for etiology and immunotherapy. J Exp Med 167:840–852, 1988.    145. Molica S, Vitelli G, Levato D, et al: Increased serum levels of matrix metalloproteinase-9
                    117. Lin KI, Tam CS, Keating MJ, et al: Relevance of the immunoglobulin VH somatic muta-  predict clinical outcome of patients with early B-cell chronic lymphocytic leukaemia.
                     tion status in patients with chronic lymphocytic leukemia treated with fludarabine,   Eur J Haematol 70:373–378, 2003.







          Kaushansky_chapter 92_p1527-1552.indd   1545                                                                  9/18/15   10:49 AM
   1565   1566   1567   1568   1569   1570   1571   1572   1573   1574   1575