Page 2325 - Williams Hematology ( PDFDrive )
P. 2325

2298  Part XII:  Hemostasis and Thrombosis  Chapter 134:   Atherothrombosis: Disease Initiation, Progression, and Treatment  2299




                    45.  Nozaki T, Sugiyama S, Koga H, et al: Significance of a multiple biomarkers strategy     76.  Binder CJ, Chang MK, Shaw PX, et al: Innate and acquired immunity in atherogenesis.
                     including  endothelial  dysfunction  to  improve  risk  stratification  for  cardiovascular   Nat Med 8:1218–1226, 2002.
                     events in patients at high risk for coronary heart disease. J Am Coll Cardiol 54:601–608,     77.  Medzhitov R: Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145,
                     2009.                                                 2001.
                    46.  Liuba P, Karnani P, Pesonen E, et al: Endothelial dysfunction after repeated Chlamydia     78.  Erridge C: The roles of pathogen-associated molecular patterns in atherosclerosis.
                     pneumoniae infection in apolipoprotein E-knockout mice. Circulation 102:1039–1044,   Trends Cardiovasc Med 18:52–56, 2008.
                     2000.                                                79.  Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate
                    47.  Fichtlscherer S, Rosenberger G, Walter DH, et al: Elevated C-reactive protein levels and   immune system. Science 296:298–300, 2002.
                     impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation     80.  Ridker PM: Clinical application of C-reactive protein for cardiovascular disease detec-
                     102:1000–1006, 2000.                                  tion and prevention. Circulation 107:363–369, 2003.
                    48.  Beckman JA, Ganz J, Creager MA, et al: Relationship of clinical presentation and calcifi-    81.  Dansky HM, Barlow CB, Lominska C, et al: Adhesion of monocytes to arterial endothe-
                     cation of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 21:1618–1622,   lium and initiation of atherosclerosis are critically dependent on vascular cell adhesion
                     2001.                                                 molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21:1662–1667, 2001.
                    49.  Libby P, Ridker PM,  Maseri A: Inflammation and atherosclerosis.  Circulation 105:     82.  Cybulsky MI, Iiyama K, Li H, et al: A major role for VCAM-1, but not ICAM-1, in early
                     1135–1143, 2002.                                      atherosclerosis. J Clin Invest 107:1255–1262, 2001.
                    50.  Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: A dynamic balance.     83.  Collins RG, Velji R, Guevara NV, et al: P-Selectin or intercellular adhesion molecule
                     Nat Rev Immunol 13:709–721, 2013.                     (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein
                    51.  Takeshita J, Mohler ER, Krishnamoorthy P, et al: Endothelial cell-, platelet-, and mono-  E-deficient mice. J Exp Med 191:189–194, 2000.
                     cyte/macrophage-derived microparticles are elevated in psoriasis beyond cardiometa-    84.  Parks  BW,  Lusis  AJ:  Macrophage  accumulation  in  atherosclerosis.  N Engl J Med
                     bolic risk factors. J Am Heart Assoc 3:e000507, 2014.  369:2352–2353, 2013.
                    52.  Lim S, Park S: Role of vascular smooth muscle cell in the inflammation of atherosclero-    85.  Robbins CS, Hilgendorf I, Weber GF, et al: Local proliferation dominates lesional mac-
                     sis. BMB Rep 47:1–7, 2014.                            rophage accumulation in atherosclerosis. Nat Med 19:1166–1172, 2013.
                    53.  Kanse SM, Parahuleva M, Muhl L, et al: Factor VII-activating protease (FSAP): Vascu-    86.  Weber C, Noels H: Atherosclerosis: Current pathogenesis and therapeutic options. Nat
                     lar functions and role in atherosclerosis. Thromb Haemost 99:286–289, 2008.  Med 17:1410–1422, 2011.
                    54.  Fuster V: Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial     87.  Zalewski A, Macphee C, Nelson JJ: Lipoprotein-associated phospholipase A2: A poten-
                     infarction: Insights from studies of vascular biology. Circulation 90:2126–2146, 1994.  tial therapeutic target for atherosclerosis.  Curr Drug Targets Cardiovasc Haematol
                    55.  Schwartz SM, Murry CE: Proliferation and the monoclonal origins of atherosclerotic   Disord 5:527–532, 2005.
                     lesions. Annu Rev Med 49:437–460, 1998.              88.  Shi Y, Zhang P, Zhang L, et al: Role of lipoprotein-associated phospholipase A(2) in
                    56.  Scott NA, Cipolla GD, Ross CE, et al: Identification of a potential role for the adventitia   leukocyte activation and inflammatory responses. Atherosclerosis 191:54–62, 2006.
                     in vascular lesion formation after balloon overstretch injury of porcine coronary arteries.     89.  Wilensky RL, Shi Y, Mohler ER 3rd, et al: Inhibition of lipoprotein-associated phos-
                     Circulation 93:2178–2187, 1996.                       pholipase A2 reduces complex coronary atherosclerotic plaque development. Nat Med
                    57.  Sakakura K, Nakano M, Otsuka F, et al: Pathophysiology of atherosclerosis plaque    14:1059–1066, 2008.
                     progression. Heart Lung Circ 22:399–411, 2013.       90.  Mohler ER 3rd, Ballantyne CM, Davidson MH, et al: The effect of darapladib on plasma
                    58.  Majesky MW, Dong XR, Regan JN, Hoglund VJ: Vascular smooth muscle progenitor   lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in
                     cells: Building and repairing blood vessels. Circ Res 108:365–377, 2011.  patients with stable coronary heart disease or coronary heart disease risk equivalent:
                    59.  Der Leyen HE, Gibbons GH, Morishita R, et al: Gene therapy inhibiting neointimal   The results of a multicenter, randomized, double-blind, placebo-controlled study. J Am
                     vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl   Coll Cardiol 51:1632–1641, 2008.
                     Acad Sci U S A 92:1137–1141, 1995.                   91.  Investigators S, White HD, Held C, et al: Darapladib for preventing ischemic events in
                    60.  Dzau VJ, Braun-Dullaeus RC, Sedding DG: Vascular proliferation and atherosclerosis:   stable coronary heart disease. N Engl J Med 370:1702–1711, 2014.
                     New perspectives and therapeutic strategies. Nat Med 8:1249–1256, 2002.    92.  Smith JD, Trogan E, Ginsberg M, et al: Decreased atherosclerosis in mice deficient in
                    61.  Bonta PI, Pols TW, de Vries CJ: NR4A nuclear receptors in atherosclerosis and vein-  both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad
                     graft disease. Trends Cardiovasc Med 17:105–111, 2007.  Sci U S A 92:8264–8268, 1995.
                    62.  Lemos PA, Lee CH, Degertekin M, et al: Early outcome after sirolimus-eluting stent     93.  Endemann G, Stanton LW, Madden KS, et al: CD36 is a receptor for oxidized low den-
                     implantation in patients with acute coronary syndromes: Insights from the Rapamycin-   sity lipoprotein. J Biol Chem 268:11811–11816, 1993.
                     Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) registry. J Am     94.  Steinberg D, Parthasarathy S, Carew TE, et al: Beyond cholesterol: Modifications of
                     Coll Cardiol 41:2093–2099, 2003.                      low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924, 1989.
                    63.  Sagripanti A, Carpi A: Antithrombotic and prothrombotic activities of the vascular     95.  Boring L, Gosling J, Cleary M, Charo IF: Decreased lesion formation in CCR2–/– mice
                     endothelium. Biomed Pharmacother 54:107–111, 2000.    reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897,
                    64.  van Der Meijden PE, van Schilfgaarde M, van Oerle R, Renne T, et al: Platelet- and     1998.
                     erythrocyte-derived microparticles trigger thrombin generation via factor XIIa.      96.  Gu L, Okada Y, Clinton SK, et al: Absence of monocyte chemoattractant protein-1
                     J Thromb Haemost 10:1355–1362, 2012.                  reduces atherosclerosis in low density lipoprotein receptor-deficient mice.  Mol Cell
                    65.  Falati S, Liu Q, Gross P, et al: Accumulation of tissue factor into developing thrombi   2:275–281, 1998.
                     in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet     97.  Gosling J, Slaymaker S, Gu L, et al: MCP-1 deficiency reduces susceptibility to athero-
                     P-selectin. J Exp Med 197:1585–1598, 2003.            sclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 103:773–778,
                    66.  Feil R, Lohmann SM, de Jonge H, et al: Cyclic GMP-dependent protein kinases and the   1999.
                     cardiovascular system: Insights from genetically modified mice. Circ Res 93:907–916,     98.  Hur J, Yang HM, Yoon CH, et al: Identification of a novel role of T cells in postnatal
                     2003.                                                 vasculogenesis: Characterization of endothelial progenitor cell colonies.  Circulation
                    67.  Gonzalez MA,  Selwyn AP: Endothelial function, inflammation, and  prognosis  in     116:1671–1682, 2007.
                     cardiovascular disease. Am J Med 115 Suppl 8A:99S–106S, 2003.    99.  Tang WH, Wu Y, Nicholls SJ, Hazen SL: Plasma myeloperoxidase predicts incident
                    68.  Anderson TJ: Nitric oxide, atherosclerosis and the clinical relevance of endothelial dys-  cardiovascular risks in stable patients undergoing medical management for coronary
                     function. Heart Fail Rev 8:71–86, 2003.               artery disease. Clin Chem 57:33–39, 2011.
                    69.  Tulis DA, Durante W, Liu X, et al: Adenovirus-mediated heme oxygenase-1 gene delivery     100. Sugiyama S, Okada Y, Sukhova GK, et al: Macrophage myeloperoxidase regulation
                     inhibits injury-induced vascular neointima formation.  Circulation 104:2710–2715,   by granulocyte macrophage colony- stimulating factor in human atherosclerosis and
                     2001.                                                 implications in acute coronary syndromes. Am J Pathol 158:879–891, 2001.
                    70.  Sachais  BS: Platelet-endothelial  interactions in  atherosclerosis.  Curr Atheroscler Rep     101. Babior BM: Phagocytes and oxidative stress. Am J Med 109:33–44, 2000.
                     3:412–416, 2001.                                     102. Suzuki H, Kurihara Y, Takeya M, et al: A role for macrophage scavenger receptors in
                    71.  Marcus AJ, Broekman MJ, Drosopoulos JH, et al: Metabolic control of excessive extra-  atherosclerosis and susceptibility to infection. Nature 386:292–296, 1997.
                     cellular nucleotide accumulation by CD39/ecto-nucleotidase-1: Implications for ische-    103. Febbraio M, Podrez EA, Smith JD, et al: Targeted disruption of the class B scavenger
                     mic vascular diseases. J Pharmacol Exp Ther 305:9–16, 2003.  receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest
                    72.  Landmesser U, Merten R, Spiekermann S, et al: Vascular extracellular superoxide   105:1049–1056, 2000.
                     dismutase activity in patients with coronary artery disease: Relation to endothelium-     104. Kodama T, Reddy P, Kishimoto C, Krieger M: Purification and characterization of a
                     dependent vasodilation. Circulation 101:2264–2270, 2000.  bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci U S A 85:9238–9242,
                    73.  Cooke JP: Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol   1988.
                     20:2032–2037, 2000.                                  105. Henriksen T, Mahoney EM, Steinberg D: Enhanced macrophage degradation of low
                    74.  Mohler ER 3rd, Shi Y, Moore J, et al: Diabetes reduces bone marrow and circulating   density lipoprotein previously incubated with cultured endothelial cells: Recogni-
                     porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and indepen-  tion by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A 78:
                     dent of cholesterol. Cytometry A 75:75–82, 2009.      6499–6503, 1981.
                    75.  Foteinos G, Hu Y, Xiao Q, et al: Rapid endothelial turnover in atherosclerosis-prone     106. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D: Modification of
                     areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation   low density lipoprotein by endothelial cells involves lipid peroxidation and degradation
                     117:1856–1863, 2008.                                  of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 81:3883–3887, 1984.







          Kaushansky_chapter 134_p2281-2302.indd   2299                                                                 17/09/15   3:50 pm
   2320   2321   2322   2323   2324   2325   2326   2327   2328   2329   2330