̅ − ℎ , () = , exp [− ] ℎ ∆ ℎ ( ) = ∆ ′ℎ − V ̅ ̅ − ℎ ℎ − , ∆ ′ℎ = V ̅ ( ) ℎ − Δ ̅ ∆ ℎ ( ) = ∆ ′ℎ + Δ ̅ − ℎ ℎ V ̅ ′ℎ ∆ ℎ ∆ ′ℎ > , ℎ ∆ ⁄ = Δ ℎ ( ) = (1 − ) Δ 2 1 ℎ 2 Δ ( ) = (1 − ) 2 [Δ ∙ + 4(1 + ) ] Δ ℎ ( )