Page 257 - Programming With Python 3
P. 257

An Introduction to STEM Programming with Python — 2019-09-03a                              Page 244
            Bonus Chapter 4 — Simplification of Boolean Expressions




             Free
            Example Simplification — Three

            F(X,Y,Z)       =      XY + X’Z + Y(X+Z) + (Z(X+Y)(Z+Y))’                Distributive
                                  XY + X’Z + YX + YZ + (Z(X+Y)(Z+Y))’
                                  XY + X’Z + YZ + (Z(X+Y)(Z+Y))’                    Idempotency
                                  XY + X’Z + (Z(X+Y)(Z+Y))’                         Consensus
             eBook                                                                  DeMorgan’s
                                  XY + X’Z + Z’ + (X+Y)’ + (Z+Y)’
                                                                                    DeMorgan’s
                                  XY + X’Z + Z’ + X’Y’ + Z’Y’
                                  XY + X’Z + Z’ + X’Y’
                                                                                    Absorption
                                  XY + X’ + Z’ + X’Y’
                                                                                    Absorption
                                  XY + X’ + Z’                                      Simplification
                                  Y + X’ + Z’                                       Simplification
             Edition





            Summary

            Please support this work at
            Here


                                  http://syw2l.org
            Important Terms

                •   Absorption                   •   DeMorgan's Law               •   Null Law
                •   Associative Law              •   Distributing Nots            •   Postulates
                                                                                  •
                                                                                      Simplification
                •   Closure                      •   Distributive Law          Free
                •   Commutative Law              •   Idempotency                  •   Theorems
                •   Compliment Law               •   Identity
                •   Consensus                    •   Involution

            Exercises



            1. Show proof for Theorem 1(a): Null Law               eBook
            X + 1 = 1

            2. Show proof for Theorem 2: Involution
            X'' = X

            3. Show proof for Theorem 3: Idempotency            Edition
            a) X + X = X


            Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
            under a Creative Commons Attribution-ShareAlike 4.0 International License.
   252   253   254   255   256   257   258   259   260   261   262