Page 511 - Jolliffe I. Principal Component Analysis
P. 511

Index
                              476
                              supervised/unsupervised learning
                                                                      248, 344, 345, 347–349, 372,
                                    200
                                                                      388, 390
                              SVD analysis, see maximum         trend 148, 326, 336
                                    covariance analysis           removal of trend 76, 393
                              SVD see singular value            tri-diagonal matrices 410
                                    decomposition               truncation of PC coefficients 67,
                              sweep-out components 403                293–296
                              switching of components 259       two-dimensional PC plots 2–4,
                                                                      78–85, 130, 201–203, 212,
                              t-distribution/t-tests 186, 187, 191,   214–219, 234–236, 242–247,
                                    193, 196, 197, 204, 205           258, 299
                                multivariate t-distribution 264,  see also biplots, correspondence
                                    364                               analysis, interpretation
                              T-mode analysis 308, 398                of two-dimensional plots,
                              temperatures 22, 274, 316, 332          principal co-ordinate
                                air temperatures 71, 211, 302,        analysis, projection pursuit
                                    303, 329                    two-stage PCA 209, 223
                                sea-surface temperatures 73,
                                    211, 274, 275, 278–283, 286,
                                                                uncentred ‘covariances’ 290, 390
                                    289, 310–314, 364, 396
                                                                uncentred PCA 41, 42, 349, 372,
                              tensor-based PCA 398
                                                                      389, 391
                              three-mode factor analysis 397
                                                                units of measurement 22, 24, 65,
                              three-mode PCA 368, 397, 398            74, 211, 274, 374, 388, 391
                              time series 49, 56, 72, 74, 76, 128,  upper triangular matrices, see
                                    129, 148, 274, 290, 298–337,
                                                                      lower triangular matrices
                                    360, 365, 369, 370, 384, 393,
                                    397, 398, 401
                                                                variable selection, see selection of
                                co-integration 330
                                                                      variables
                                distributed lag model 337
                                                                variance inflation factors (VIFs),
                                moving averages 303, 368
                                                                      see multicollinearities
                                seasonal dependence 300, 303,
                                                                variances for PCs, see PC
                                    314, 315
                                                                      variances
                                stationarity 300, 303, 304, 314,
                                    316, 327, 330               variation between means 60, 85,
                                tests for randomness (white           96, 158
                                    noise) 128                  varimax rotation 153, 154,
                                see also autocorrelation,             162–165, 182, 188, 191, 238,
                                    autoregressive processes,         270, 271, 274, 277–278
                                    frequency domain PCs, red   vector-valued data 129, 369, 370
                                    noise, spectral analysis,
                                    trend, white noise          weighted PCA 21, 209, 241, 330,
                              T¨oplitz matrices 56, 303, 304          353, 382–385
                              transformed variables 64, 248, 374,  weights
                                    376, 377, 382, 386            exponentially decreasing 337,
                                logarithmic transformation 24,        368, 384
   506   507   508   509   510   511   512   513   514   515   516