Page 91 - Past Year
P. 91

89 | P a g e

               31.     3   = −   + 19


                                             5 
               32.     Minimum point is  1,     , maximum point is  2,2  
                                         
                                             2 


                                                         
               33.     (a)    C '   200,x      1800x   x x  4000
                                                            2
                       (b)    900 units will maximize the profit

                       (c)    The price per unit is RM 1100


               34.     (a)    (4,0.2976), (−4, −0.2976)

                       (b)    (4,0.2976) and (−4, −0.29776) are maximum points


               35.     (a)    The maximum profit is RM 24700

                       (b)    The selling price per unit is RM 50
                       (c)    The level of production is 141 units


                                                  1    34
               36.     Equation of normal:  y     x 
                                                  9     9



               37.     Maximum point is     3,87   and minimum point is      1 5   ,  
                                                                         2 4 


                                          2
               38.     (a)       0.1x   x  120x  6000

                       (b)    p   0.2x   x   80

                       (c)    the profit obtained is RM 214 000

                       (d)    200 units of components need to be produced to minimize the cost. The minimum
                              cost is RM 2000. Price per unit component is RM 120 at minimum cost.


                           18    25
               39.     y     x 
                           7      7
   86   87   88   89   90   91   92