Page 1142 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1142
1004.e4 Part XII Hemostasis and Thrombosis
133. Schubbert S, Zenker M, Rowe SL, et al: Germline KRAS mutations 159. Signer RA, Magee JA, Salic A, et al: Haematopoietic stem cells require
cause Noonan syndrome. Nat Genet 38:331, 2006. a highly regulated protein synthesis rate. Nature 509:49, 2014.
134. Carta C, Pantaleoni F, Bocchinfuso G, et al: Germline missense muta- 160. Tesio M, Oser GM, Baccelli I, et al: Pten loss in the bone marrow leads
tions affecting KRAS Isoform B are associated with a severe Noonan to G-CSF-mediated HSC mobilization. J Exp Med 210:2337, 2013.
syndrome phenotype. Am J Hum Genet 79:129, 2006. 161. Zhang J, Grindley JC, Yin T, et al: PTEN maintains haematopoietic
135. Zenker M, Lehmann K, Schulz AL, et al: Expansion of the genotypic stem cells and acts in lineage choice and leukaemia prevention. Nature
and phenotypic spectrum in patients with KRAS germline mutations. 441:518, 2006.
J Med Genet 44:131, 2007. 162. Yilmaz OH, Valdez R, Theisen BK, et al: PTEN dependence dis-
136. Bertola DR, Pereira AC, Brasil AS, et al: Further evidence of genetic tinguishes haematopoietic stem cells from leukaemia-initiating cells.
heterogeneity in Costello syndrome: involvement of the KRAS gene. Nature 441:475, 2006.
J Hum Genet 52:521, 2007. 163. Emanuel PD, Bates LJ, Castleberry RP, et al: Selective hypersensitiv-
137. Schulz AL, Albrecht B, Arici C, et al: Mutation and phenotypic spec- ity to granulocyte-macrophage colony-stimulating factor by juvenile
trum in patients with cardio-facio-cutaneous and Costello syndrome. chronic myeloid leukemia hematopoietic progenitors. Blood 77:925,
Clin Genet 73:62, 2008. 1991.
138. Keilhack H, David FS, McGregor M, et al: Diverse biochemical proper- 164. Karnoub AE, Weinberg RA: Ras oncogenes: split personalities. Nat Rev
ties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem Mol Cell Biol 9:517, 2008.
280:30984, 2005. 165. Lyubynska N, et al: A MEK inhibitor abrogates myeloproliferative
139. Kratz CP, Niemeyer CM, Castleberry RP, et al: The mutational spec- disease in Kras mutant mice. Sci Transl Med 3:76ra27, 2011.
trum of PTPN11 in juvenile myelomonocytic leukemia and Noonan 166. Chang T, Krisman K, Theobald EH, et al: Sustained MEK inhibition
syndrome/myeloproliferative disease. Blood 106:2183, 2005. abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest
140. Tartaglia M, Martinelli S, Stella L, et al: Diversity and functional 123:335, 2013.
consequences of germline and somatic PTPN11 mutations in human 167. Goodwin CB, Li XJ, Mali RS, et al: PI3K p110δ uniquely promotes
disease. Am J Hum Genet 78:279, 2006. gain-of-function Shp2-induced GM-CSF hypersensitivity in a model
141. Strullu M, Caye A, Lachenaud J, et al: Juvenile myelomonocytic of JMML. Blood 123:2838, 2014.
leukaemia and Noonan syndrome. J Med Genet 51:689, 2014. 168. Gritsman K, Yuzugullu H, Von T, et al: Hematopoiesis and RAS-driven
142. Loh ML, Sakai DS, Flotho C, et al: Mutations in CBL occur frequently myeloid leukemia differentially require PI3K isoform p110α. J Clin
in juvenile myelomonocytic leukemia. Blood 114:1859, 2009. Invest 124:1794, 2014.
143. Muramatsu H, Makishima H, Jankowska AM, et al: Mutations of an 169. Akutagawa J, Huang TQ, Epstein I, et al: Targeting the PI3K/Akt
E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in pathway in murine MDS/MPN dreiven by hyperactive Ras. Leukemia
juvenile myelomonocytic leukemia. Blood 115:1969, 2010. 30:1335, 2016.
144. Perez B, Mechinaud F, Galambrun C, et al: Germline mutations in 170. Yang Z, Kondo T, Voorhorst CS, et al: Increased c-Jun expression and
the CBL gene define a new genetic syndrome with predisposition to reduced GATA2 expression promote aberrant monocytic differentiation
juvenile myelomonocytic leukemia. J Med Genet 47:686, 2010. induced by activating PTPN11 mutants. Mol Cell Biol 29:4376, 2009.
145. Matsuda K, Taira C, Sakashita K, et al: Long-term survival after non- 171. Huang H, Woo AJ, Waldon Z, et al: A Src family kinase-Shp2 axis
intensive chemotherapy in some juvenile myelomonocytic leukemia controls RUNX1 activity in megakaryocyte and T-lymphocyte dif-
patients with CBL mutations, and the possible presence of healthy ferentiation. Genes Dev 26:1587, 2012.
persons with the mutations. Blood 115:5429, 2010. 172. Kotecha N, Flores NJ, Irish JM, et al: Single-cell profiling identifies
146. Stieglitz E, Taylor-Weiner AN, Chang TY, et al: The genomic landscape aberrant STAT5 activation in myeloid malignancies with specific clini-
of juvenile myelomonocytic leukemia. Nat Genet 48:101, 2015. cal and biologic correlates. Cancer Cell 14:335, 2008.
147. Caye A, Strullu M, Guidez F, et al: Juvenile myelomonocytic leukemia 173. Yoshimi A, Kamachi Y, Imai K, et al: Wiskott-Aldrich syndrome
displays mutations in components of the RAS pathway and the PRC2 presenting with a clinical picture mimicking juvenile myelomonocytic
network. Nat Genet 47:1334, 2015. leukaemia. Pediatr Blood Cancer 60:836, 2013.
148. Sakaguchi H, Okuno Y, Muramatu H, et al: Exome sequencing 174. Hoyoux C, Dresse MF, Forget P, et al: Osteopetrosis mimicking juvenile
identifies mutations of SETBP1 and JAK3 in juvenile myelomoncytic myelomonocytic leukemia. Pediatr Int 56:779, 2014.
leukemia. Nat Genet 45:937, 2013. 175. Calvo KR, Price S, Braylan RC, et al: JMML and RALD (Ras-associated
149. Lock R, Cichowski K: Loss of negative regulators amplifies RAS signal- autoimmune leukoproliferative disorder): common genetic etiology yet
ing. Nat Genet 47:426, 2015. clinically distinct entities. Blood 125:2753, 2015.
150. Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling 176. Arico M, Biondi A, Pui CH: Juvenile myelomonocytic leukemia [see
in hematologic malignancies. Blood 120:3397, 2012. comments]. Blood 90:479, 1997.
151. Chang TY, Dvorak CC, Loh ML: Bedside to bench in juvenile myelo- 177. Castro-Malaspina H, Schaison G, Passe S, et al: Subacute and chronic
monocytic leukemia: insights into leukemogenesis from a rare pediatric myelomonocytic leukemia in children (juvenile CML). Clinical and
leukemia. Blood 124:2487, 2014. hematologic observations, and identification of prognostic factors.
152. Gandre-Babbe S, Paluru P, Aribeana C, et al: Patient-derived induced Cancer 54:675, 1984.
pluripotent stem cells recapitulate hematopoietic abnormalities of 178. Matsuda K, Shimada A, Yoshida N, et al: Spontaneous improvement of
juvenile myelomonocytic leukemia. Blood 121:4925, 2013. hematologic abnormalities in patients having juvenile myelomonocytic
153. Li Q, Bohin N, Wen T, et al: Oncogenic Nras has bimodal effects on leukemia with specific RAS mutations. Blood 109:5477, 2007.
stem cells that sustainably increase competitiveness. Nature 504:143, 179. Imamura M, Imai C, Takachi T, et al: Juvenile myelomonocytic leu-
2013. kemia with less aggressive clinical course and KRAS mutation. Pediatr
154. Sabnis AJ, Cheung LS, Dail M, et al: Oncogenic Kras inisitate leukemia Blood Cancer 51:569, 2008.
in hematopoietic stem cells. PLoS Biol 7:e59, 2009. 180. Niemeyer C, Kang M, Shin D, et al: Germline CBL mutations cause
155. Zhang Y, Taylor BR, Shannon K, et al: Quantitative effects of Nf1 developmental abnormalities and predispose to juvenile myelomono-
inactivation on in vivo hematopoiesis. J Clin Invest 108:709, 2001. cytic leukemia. Nat Genet 42:794, 2010.
156. Rathinam C, Thien CB, Langdon WY, et al: The E3 ubiquitin ligase 181. Locatelli F, Nollke P, Zecca M, et al: Hematopoietic stem cell trans-
c-Cbl restricts development and functions of hematopoietic stem cells. plantation (HSCT) in children with juvenile myelomonocytic leukemia
Genes Dev 22:992, 2008. (JMML): results of the EWOG-MDS/EBMT trial. Blood 105:410,
157. Sabnis AJ, Cheung LS, Dail M, et al: Oncogenic Kras initiates leukemia 2005.
in hematopoietic stem cells. PLoS Biol 7:e59, 2009. 182. Locatelli F, Crotta A, Ruggeri A, et al: Analysis of risk factors influenc-
158. Yuzugullu H, Baitsch L, Von T, et al: A PI3K p110beta-Rac signalling ing outcomes after cord blood transplantation in children with juvenile
loop mediates Pten-loss-induced perturbation of haematopoiesis and myelomonocytic leukemia: a EUROCORD, EBMT, EWOG-MDS,
leukaemogenesis. Nat Commun 6:8501, 2015. CIBMTR study. Blood 122:2135, 2013.

