Page 1142 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1142

1004.e4  Part XII  Hemostasis and Thrombosis


        133.  Schubbert S, Zenker M, Rowe SL, et al: Germline KRAS mutations   159.  Signer RA, Magee JA, Salic A, et al: Haematopoietic stem cells require
            cause Noonan syndrome. Nat Genet 38:331, 2006.        a highly regulated protein synthesis rate. Nature 509:49, 2014.
        134.  Carta C, Pantaleoni F, Bocchinfuso G, et al: Germline missense muta-  160.  Tesio M, Oser GM, Baccelli I, et al: Pten loss in the bone marrow leads
            tions affecting KRAS Isoform B are associated with a severe Noonan   to G-CSF-mediated HSC mobilization. J Exp Med 210:2337, 2013.
            syndrome phenotype. Am J Hum Genet 79:129, 2006.  161.  Zhang J, Grindley JC, Yin T, et al: PTEN maintains haematopoietic
        135.  Zenker M, Lehmann K, Schulz AL, et al: Expansion of the genotypic   stem cells and acts in lineage choice and leukaemia prevention. Nature
            and phenotypic spectrum in patients with KRAS germline mutations.   441:518, 2006.
            J Med Genet 44:131, 2007.                         162.  Yilmaz  OH,  Valdez  R,  Theisen  BK,  et al:  PTEN  dependence  dis-
        136.  Bertola DR, Pereira AC, Brasil AS, et al: Further evidence of genetic   tinguishes  haematopoietic  stem  cells  from  leukaemia-initiating  cells.
            heterogeneity in Costello syndrome: involvement of the KRAS gene.    Nature 441:475, 2006.
            J Hum Genet 52:521, 2007.                         163.  Emanuel PD, Bates LJ, Castleberry RP, et al: Selective hypersensitiv-
        137.  Schulz AL, Albrecht B, Arici C, et al: Mutation and phenotypic spec-  ity  to  granulocyte-macrophage  colony-stimulating  factor  by  juvenile
            trum in patients with cardio-facio-cutaneous and Costello syndrome.   chronic  myeloid  leukemia  hematopoietic  progenitors.  Blood  77:925,
            Clin Genet 73:62, 2008.                               1991.
        138.  Keilhack H, David FS, McGregor M, et al: Diverse biochemical proper-  164.  Karnoub AE, Weinberg RA: Ras oncogenes: split personalities. Nat Rev
            ties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem   Mol Cell Biol 9:517, 2008.
            280:30984, 2005.                                  165.  Lyubynska  N,  et al:  A  MEK  inhibitor  abrogates  myeloproliferative
        139.  Kratz CP, Niemeyer CM, Castleberry RP, et al: The mutational spec-  disease in Kras mutant mice. Sci Transl Med 3:76ra27, 2011.
            trum of PTPN11 in juvenile myelomonocytic leukemia and Noonan   166.  Chang T, Krisman K, Theobald EH, et al: Sustained MEK inhibition
            syndrome/myeloproliferative disease. Blood 106:2183, 2005.  abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest
        140.  Tartaglia  M,  Martinelli  S,  Stella  L,  et al:  Diversity  and  functional   123:335, 2013.
            consequences of germline and somatic PTPN11 mutations in human   167.  Goodwin CB, Li XJ, Mali RS, et al: PI3K p110δ uniquely promotes
            disease. Am J Hum Genet 78:279, 2006.                 gain-of-function Shp2-induced GM-CSF hypersensitivity in a model
        141.  Strullu  M,  Caye  A,  Lachenaud  J,  et al:  Juvenile  myelomonocytic   of JMML. Blood 123:2838, 2014.
            leukaemia and Noonan syndrome. J Med Genet 51:689, 2014.  168.  Gritsman K, Yuzugullu H, Von T, et al: Hematopoiesis and RAS-driven
        142.  Loh ML, Sakai DS, Flotho C, et al: Mutations in CBL occur frequently   myeloid  leukemia  differentially  require  PI3K  isoform  p110α.  J  Clin
            in juvenile myelomonocytic leukemia. Blood 114:1859, 2009.  Invest 124:1794, 2014.
        143.  Muramatsu H, Makishima H, Jankowska AM, et al: Mutations of an   169.  Akutagawa  J,  Huang  TQ,  Epstein  I,  et al:  Targeting  the  PI3K/Akt
            E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in   pathway in murine MDS/MPN dreiven by hyperactive Ras. Leukemia
            juvenile myelomonocytic leukemia. Blood 115:1969, 2010.  30:1335, 2016.
        144.  Perez  B,  Mechinaud  F,  Galambrun  C,  et al:  Germline  mutations  in   170.  Yang Z, Kondo T, Voorhorst CS, et al: Increased c-Jun expression and
            the CBL gene define a new genetic syndrome with predisposition to   reduced GATA2 expression promote aberrant monocytic differentiation
            juvenile myelomonocytic leukemia. J Med Genet 47:686, 2010.  induced by activating PTPN11 mutants. Mol Cell Biol 29:4376, 2009.
        145.  Matsuda K, Taira C, Sakashita K, et al: Long-term survival after non-  171.  Huang  H, Woo  AJ, Waldon  Z,  et al:  A  Src  family  kinase-Shp2  axis
            intensive  chemotherapy  in  some  juvenile  myelomonocytic  leukemia   controls  RUNX1  activity  in  megakaryocyte  and  T-lymphocyte  dif-
            patients  with  CBL  mutations,  and  the  possible  presence  of  healthy   ferentiation. Genes Dev 26:1587, 2012.
            persons with the mutations. Blood 115:5429, 2010.  172.  Kotecha  N, Flores NJ, Irish  JM, et al: Single-cell profiling identifies
        146.  Stieglitz E, Taylor-Weiner AN, Chang TY, et al: The genomic landscape   aberrant STAT5 activation in myeloid malignancies with specific clini-
            of juvenile myelomonocytic leukemia. Nat Genet 48:101, 2015.  cal and biologic correlates. Cancer Cell 14:335, 2008.
        147.  Caye A, Strullu M, Guidez F, et al: Juvenile myelomonocytic leukemia   173.  Yoshimi  A,  Kamachi  Y,  Imai  K,  et al:  Wiskott-Aldrich  syndrome
            displays mutations in components of the RAS pathway and the PRC2   presenting with a clinical picture mimicking juvenile myelomonocytic
            network. Nat Genet 47:1334, 2015.                     leukaemia. Pediatr Blood Cancer 60:836, 2013.
        148.  Sakaguchi  H,  Okuno  Y,  Muramatu  H,  et al:  Exome  sequencing   174.  Hoyoux C, Dresse MF, Forget P, et al: Osteopetrosis mimicking juvenile
            identifies mutations of SETBP1 and JAK3 in juvenile myelomoncytic   myelomonocytic leukemia. Pediatr Int 56:779, 2014.
            leukemia. Nat Genet 45:937, 2013.                 175.  Calvo KR, Price S, Braylan RC, et al: JMML and RALD (Ras-associated
        149.  Lock R, Cichowski K: Loss of negative regulators amplifies RAS signal-  autoimmune leukoproliferative disorder): common genetic etiology yet
            ing. Nat Genet 47:426, 2015.                          clinically distinct entities. Blood 125:2753, 2015.
        150.  Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling   176.  Arico M, Biondi A, Pui CH: Juvenile myelomonocytic leukemia [see
            in hematologic malignancies. Blood 120:3397, 2012.    comments]. Blood 90:479, 1997.
        151.  Chang TY, Dvorak CC, Loh ML: Bedside to bench in juvenile myelo-  177.  Castro-Malaspina H, Schaison G, Passe S, et al: Subacute and chronic
            monocytic leukemia: insights into leukemogenesis from a rare pediatric   myelomonocytic  leukemia  in  children  (juvenile  CML).  Clinical  and
            leukemia. Blood 124:2487, 2014.                       hematologic  observations,  and  identification  of  prognostic  factors.
        152.  Gandre-Babbe S, Paluru P, Aribeana C, et al: Patient-derived induced   Cancer 54:675, 1984.
            pluripotent  stem  cells  recapitulate  hematopoietic  abnormalities  of   178.  Matsuda K, Shimada A, Yoshida N, et al: Spontaneous improvement of
            juvenile myelomonocytic leukemia. Blood 121:4925, 2013.  hematologic abnormalities in patients having juvenile myelomonocytic
        153.  Li Q, Bohin N, Wen T, et al: Oncogenic Nras has bimodal effects on   leukemia with specific RAS mutations. Blood 109:5477, 2007.
            stem cells that sustainably increase competitiveness. Nature 504:143,   179.  Imamura M, Imai C, Takachi T, et al: Juvenile myelomonocytic leu-
            2013.                                                 kemia with less aggressive clinical course and KRAS mutation. Pediatr
        154.  Sabnis AJ, Cheung LS, Dail M, et al: Oncogenic Kras inisitate leukemia   Blood Cancer 51:569, 2008.
            in hematopoietic stem cells. PLoS Biol 7:e59, 2009.  180.  Niemeyer C, Kang M, Shin D, et al: Germline CBL mutations cause
        155.  Zhang  Y, Taylor  BR,  Shannon  K,  et al:  Quantitative  effects  of  Nf1   developmental abnormalities and predispose to juvenile myelomono-
            inactivation on in vivo hematopoiesis. J Clin Invest 108:709, 2001.  cytic leukemia. Nat Genet 42:794, 2010.
        156.  Rathinam C, Thien CB, Langdon WY, et al: The E3 ubiquitin ligase   181.  Locatelli F, Nollke P, Zecca M, et al: Hematopoietic stem cell trans-
            c-Cbl restricts development and functions of hematopoietic stem cells.   plantation (HSCT) in children with juvenile myelomonocytic leukemia
            Genes Dev 22:992, 2008.                               (JMML):  results  of  the  EWOG-MDS/EBMT  trial.  Blood  105:410,
        157.  Sabnis AJ, Cheung LS, Dail M, et al: Oncogenic Kras initiates leukemia   2005.
            in hematopoietic stem cells. PLoS Biol 7:e59, 2009.  182.  Locatelli F, Crotta A, Ruggeri A, et al: Analysis of risk factors influenc-
        158.  Yuzugullu H, Baitsch L, Von T, et al: A PI3K p110beta-Rac signalling   ing outcomes after cord blood transplantation in children with juvenile
            loop  mediates  Pten-loss-induced  perturbation  of  haematopoiesis  and   myelomonocytic  leukemia:  a  EUROCORD,  EBMT,  EWOG-MDS,
            leukaemogenesis. Nat Commun 6:8501, 2015.             CIBMTR study. Blood 122:2135, 2013.
   1137   1138   1139   1140   1141   1142   1143   1144   1145   1146   1147