Page 1065 - Williams Hematology ( PDFDrive )
P. 1065
1040 Part VII: Neutrophils, Eosinophils, Basophils, and Mast Cells Chapter 66: Disorders of Neutrophil Function 1041
333. Aebi M, Helenius A, Schenk B, et al: Carbohydrate-deficient glycoprotein syndromes 370. Freeman AF, Holland SM: The hyper-IgE syndromes. Immunol Allergy Clin North Am
become congenital disorders of glycosylation: An updated nomenclature for CDG. First 28:277, 2008.
International Workshop on CDGS. Glycoconj J 16:669, 1999. 371. Engelich G, Wright DG, Hartshorn KL: Acquired disorders of phagocyte function com-
334. Hidalgo A, Ma S, Peired AJ, et al: Insights into leukocyte adhesion deficiency type 2 plicating medical and surgical illnesses. Clin Infect Dis 33:2040, 2001.
from a novel mutation in the GDP-fucose transporter gene. Blood 101:1705, 2003. 372. Buckley RH: The hyper-IgE syndrome. Clin Rev Allergy Immunol 20:139, 2001.
335. Kuijpers TW, van BR, Kamerbeek N, et al: Natural history and early diagnosis of 373. Grimbacher B, Holland SM, Gallin JI, et al: Hyper-IgE syndrome with recurrent infec-
LAD-1/variant syndrome. Blood 109:3529, 2007. tions—An autosomal dominant multisystem disorder. N Engl J Med 340:692, 1999.
336. Kuijpers TW, van de V, Weterman MA, et al: LAD-1/variant syndrome is caused by 374. Zhang Q, Davis JC, Lamborn IT, et al: Combined immunodeficiency associated with
mutations in FERMT3. Blood 113:4740, 2009. DOCK8 mutations. N Engl J Med 361:2046, 2009.
337. Fischer A, Lisowska-Grospierre B, Anderson DC, et al: Leukocyte adhesion deficiency: 375. Yong PF, Freeman AF, Engelhardt KR, et al: An update on the hyper-IgE syndromes.
Molecular basis and functional consequences. Immunodefic Rev 1:39, 1988. Arthritis Res Ther 14:228, 2012.
338. Bauer TR Jr, Hickstein DD: Gene therapy for leukocyte adhesion deficiency. Curr Opin 376. Segal BH, Leto TL, Gallin JI, et al: Genetic, biochemical, and clinical features of chronic
Mol Ther 2:383, 2000. granulomatous disease. Medicine (Baltimore) 79:170, 2000.
339. Malech HL, Hickstein DD: Genetics, biology and clinical management of myeloid cell 377. Berendes H, Bridges RA, Good RA: A fatal granulomatosus of childhood: The clinical
primary immune deficiencies: Chronic granulomatous disease and leukocyte adhesion study of a new syndrome. Minn Med 40:309, 1957.
deficiency. Curr Opin Hematol 14:29, 2007. 378. Landing BH, Shirkey HS: A syndrome of recurrent infection and infiltration of viscera
340. Boxer LA, Hedley-Whyte ET, Stossel TP: Neutrophil action dysfunction and abnormal by pigmented lipid histiocytes. Pediatrics 20:431, 1957.
neutrophil behavior. N Engl J Med 291:1093, 1974. 379. Sbarra AJ, Karnovsky ML: The biochemical basis of phagocytosis. I. Metabolic changes
341. Southwick FS, Dabiri GA, Stosse TP: Neutrophil actin dysfunction is a genetic disorder during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem
associated with partial impairment of neutrophil actin assembly in three family mem- 234:1355, 1959.
bers. J Clin Invest 82:1525, 1988. 380. Iyer GYN, Islam MF, Quastel JH: Biochemical aspects of phagocytosis. Nature 192:535,
342. Malech HL, Gallin JI: Current concepts: Immunology neutrophils in human diseases. N 1961.
Engl J Med 317:687, 1987. 381. Iyer GY, Quastel JH: NADPH and NADH oxidation by guinea pig polymorphonuclear
343. Southwick FS, Howard TH, Holbrook T, et al: The relationship between CR3 deficiency leucocytes. Can J Biochem Physiol 41:427, 1963.
and neutrophil actin assembly. Blood 73:1973, 1989. 382. Baehner RL, Nathan DG: Quantitative nitroblue tetrazolium test in chronic granuloma-
344. Coates TD, Torkildson JC, Torres M, et al: An inherited defect of neutrophil motility tous disease. N Engl J Med 278:971, 1968.
and microfilamentous cytoskeleton associated with abnormalities in 47-kD and 89-kD 383. Winkelstein JA, Marino MC, Johnston RB Jr, et al: Chronic granulomatous disease.
proteins. Blood 78:1338, 1991. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155, 2000.
345. Howard T, Li Y, Torres M, et al: The 47-kD protein increased in neutrophil actin dys- 384. Parkos CA, Allen RA, Cochrane CG, et al: Purified cytochrome b from human gran-
function with 47-and 89-kD protein abnormalities is lymphocyte-specific protein. ulocyte plasma membrane is comprised of two polypeptides with relative molecular
Blood 83:231, 1994. weights of 91,000 and 22,000. J Clin Invest 80:732, 1987.
346. Howard TH, Hartwig J, Cunningham C: Lymphocyte-specific protein 1 expression in 385. Quinn MT, Mullen ML, Jesaitis AJ: Human neutrophil cytochrome b contains
eukaryotic cells reproduces the morphologic and motile abnormality of NAD 47/89 multiple hemes. Evidence for heme associated with both subunits. J Biol Chem
neutrophils. Blood 91:4786, 1998. 267:7303, 1992.
347. Camitta BM, Quesenberry PJ, Parkman R, et al: Bone marrow transplantation for an 386. Rotrosen D, Yeung CL, Leto TL, et al: Cytochrome b558: The flavin-binding component
infant with neutrophil dysfunction. Exp Hematol 5:109, 1977. of the phagocyte NADPH oxidase. Science 256:1459, 1992.
348. Samuels J, Aksentijevich I, Torosyan Y, et al: Familial Mediterranean fever at the millen- 387. Segal AW, West I, Wientjes F, et al: Cytochrome b-245 is a flavocytochrome containing
nium. Clinical spectrum, ancient mutations, and a survey of 100 American referrals to FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem
the National Institutes of Health. Medicine (Baltimore) 77:268, 1998. J 284:781, 1992.
349. Siegal S: Benign paroxysmal peritonitis. Gastroenterology 12:234, 1949. 388. Sumimoto H, Sakamoto N, Nozaki M, et al: Cytochrome b558, a component of the
350. Drenth JP, van der Meer JW: Hereditary periodic fever. N Engl J Med 345:1748, 2001. phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 186:1368,
351. Ben-Chetrit E, Levy M: Familial Mediterranean fever. Lancet 351:659, 1998. 1992.
352. Ancient missense mutations in a new member of the RoRet gene family are likely to cause 389. Zhen L, Yu L, Dinauer MC: Probing the role of the carboxyl terminus of the gp91phox
familial Mediterranean fever. The International FMF Consortium. Cell 90:797, 1997. subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis. J Biol
353. Centola M, Wood G, Frucht DM, et al: The gene for familial Mediterranean fever, Chem 273:6575, 1998.
MEFV, is expressed in early leukocyte development and is regulated in response to 390. Shatwell KP, Dancis A, Cross AR, et al: The FRE1 ferric reductase of Saccharomyces
inflammatory mediators. Blood 95:3223, 2000. cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240,
354. Ryan JG, Kastner DL: Fevers, genes, and innate immunity. Curr Top Microbiol Immunol 1996.
321:169, 2008. 391. Deleo FR, Quinn MT: Assembly of the phagocyte NADPH oxidase: Molecular interac-
355. Hull KM, Shoham N, Chae JJ, et al: The expanding spectrum of systemic autoinflamma- tion of oxidase proteins. J Leukoc Biol 60:677, 1996.
tory disorders and their rheumatic manifestations. Curr Opin Rheumatol 15:61, 2003. 392. Segal AW: The NADPH oxidase and chronic granulomatous disease. Mol Med Today
356. Richards N, Schaner P, Diaz A, et al: Interaction between pyrin and the apoptotic speck 2:129, 1996.
protein (ASC) modulates ASC-induced apoptosis. J Biol Chem 276:39320, 2001. 393. Kanai F, Liu H, Field SJ, et al: The PX domains of p47phox and p40phox bind to lipid
357. Touitou I: The spectrum of Familial Mediterranean Fever (FMF) mutations. Eur J Hum products of PI(3)K. Nat Cell Biol 3:675, 2001.
Genet 9:473, 2001. 394. Chen J, He R, Minshall RD, et al: Characterization of a mutation in the Phox homology
358. Schaner P, Richards N, Wadhwa A, et al: Episodic evolution of pyrin in primates: domain of the NADPH oxidase component p40phox identifies a mechanism for nega-
Human mutations recapitulate ancestral amino acid states. Nat Genet 27:318, 2001. tive regulation of superoxide production. J Biol Chem 282:30273, 2007.
359. Williamson LM, Hull D, Mehta R, et al: Familial Hibernian fever. Q J Med 51:469, 1982. 395. Cross AR, Jones OT: Enzymic mechanisms of superoxide production. Biochim Biophys
360. Lakshman R, Finn A: Neutrophil disorders and their management. J Clin Pathol 54:7, Acta 1057:281, 1991.
2001. 396. Heyworth PG, Curnutte JT, Rae J, et al: Hematologically important mutations: X-linked
361. Perlmutter DH, Colten HR: Molecular basis of complement deficiencies. Immunodefic chronic granulomatous disease (second update). Blood Cells Mol Dis 27:16, 2001.
Rev 1:105, 1989. 397. Francke U, Ochs HD, de MB, et al: Minor Xp21 chromosome deletion in a male associ-
362. Kannourakis G: Glycogen storage disease. Semin Hematol 39:103, 2002. ated with expression of Duchenne muscular dystrophy, chronic granulomatous disease,
363. Smith OP: Shwachman-Diamond syndrome. Semin Hematol 39:95, 2002. retinitis pigmentosa, and McLeod syndrome. Am J Hum Genet 37:250, 1985.
364. Jones DH, Schmalstieg FC, Dempsey K, et al: Subcellular distribution and mobilization 398. Royer-Pokora B, Kunkel LM, Monaco AP, et al: Cloning the gene for an inherited
of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood 75:488, 1990. human disorder—chronic granulomatous disease—on the basis of its chromosomal
365. Sapey E, Greenwood H, Walton G, et al: Phosphoinositide 3-kinase inhibition restores location. Nature 322:32, 1986.
neutrophil accuracy in the elderly: Toward targeted treatments for immunosenescence. 399. Frey D, Machler M, Seger R, et al: Gene deletion in a patient with chronic granulomatous
Blood 123:239, 2014. disease and McLeod syndrome: Fine mapping of the Xk gene locus. Blood 71:252, 1988.
366. Brayton RG, Stokes PE, Schwartz MS, et al: Effect of alcohol and various diseases on 400. de Boer M., Bolscher BG, Dinauer MC, et al: Splice site mutations are a common cause
leukocyte mobilization, phagocytosis and intracellular bacterial killing. N Engl J Med of X-linked chronic granulomatous disease. Blood 80:1553, 1992.
282:123, 1970. 401. Curnutte JT, Orkin S, Dinauer MC: Genetic disorders of phagocyte function, in The
367. Oseas RS, Allen J, Yang HH, et al: Mechanism of dexamethasone inhibition of che- Molecular Basis of Blood Diseases, 2nd ed, edited by Stammatoyannopoulos G, p 493.
motactic factor induced granulocyte aggregation. Blood 59:265, 1982. WB Saunders, Philadelphia, 1994.
368. Dale DC, Fauci AS, Wolff SM: Alternate-day prednisone. Leukocyte kinetics and sus- 402. Roos D, de BM, Kuribayashi F, et al: Mutations in the X-linked and autosomal recessive
ceptibility to infections. N Engl J Med 291:1154, 1974. forms of chronic granulomatous disease. Blood 87:1663, 1996.
369. Boxer LA, Allen JM, Baehner RL: Diminished polymorphonuclear leukocyte adher- 403. Rae J, Newburger PE, Dinauer MC, et al: X-Linked chronic granulomatous disease:
ence. Function dependent on release of cyclic AMP by endothelial cells after stimula- Mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst
tion of beta-receptors by epinephrine. J Clin Invest 66:268, 1980. oxidase. Am J Hum Genet 62:1320, 1998.
Kaushansky_chapter 66_p1005-1042.indd 1040 9/21/15 10:48 AM

