Page 1065 - Williams Hematology ( PDFDrive )
P. 1065

1040           Part VII:  Neutrophils, Eosinophils, Basophils, and Mast Cells                                                                                              Chapter 66:  Disorders of Neutrophil Function         1041




                 333. Aebi M, Helenius A, Schenk B, et al: Carbohydrate-deficient glycoprotein syndromes     370. Freeman AF, Holland SM: The hyper-IgE syndromes. Immunol Allergy Clin North Am
                  become congenital disorders of glycosylation: An updated nomenclature for CDG. First   28:277, 2008.
                  International Workshop on CDGS. Glycoconj J 16:669, 1999.    371. Engelich G, Wright DG, Hartshorn KL: Acquired disorders of phagocyte function com-
                 334. Hidalgo A, Ma S, Peired AJ, et al: Insights into leukocyte adhesion deficiency type 2   plicating medical and surgical illnesses. Clin Infect Dis 33:2040, 2001.
                  from a novel mutation in the GDP-fucose transporter gene. Blood 101:1705, 2003.    372. Buckley RH: The hyper-IgE syndrome. Clin Rev Allergy Immunol 20:139, 2001.
                 335. Kuijpers TW,  van  BR,  Kamerbeek  N,  et  al:  Natural  history  and  early  diagnosis  of     373. Grimbacher B, Holland SM, Gallin JI, et al: Hyper-IgE syndrome with recurrent infec-
                  LAD-1/variant syndrome. Blood 109:3529, 2007.          tions—An autosomal dominant multisystem disorder. N Engl J Med 340:692, 1999.
                 336. Kuijpers TW, van de V, Weterman MA, et al: LAD-1/variant syndrome is caused by     374. Zhang Q, Davis JC, Lamborn IT, et al: Combined immunodeficiency associated with
                  mutations in FERMT3. Blood 113:4740, 2009.             DOCK8 mutations. N Engl J Med 361:2046, 2009.
                 337. Fischer A, Lisowska-Grospierre B, Anderson DC, et al: Leukocyte adhesion deficiency:     375. Yong PF, Freeman AF, Engelhardt KR, et al: An update on the hyper-IgE syndromes.
                  Molecular basis and functional consequences. Immunodefic Rev 1:39, 1988.  Arthritis Res Ther 14:228, 2012.
                 338. Bauer TR Jr, Hickstein DD: Gene therapy for leukocyte adhesion deficiency. Curr Opin     376. Segal BH, Leto TL, Gallin JI, et al: Genetic, biochemical, and clinical features of chronic
                  Mol Ther 2:383, 2000.                                  granulomatous disease. Medicine (Baltimore) 79:170, 2000.
                 339. Malech HL, Hickstein DD: Genetics, biology and clinical management of myeloid cell     377. Berendes H, Bridges RA, Good RA: A fatal granulomatosus of childhood: The clinical
                  primary immune deficiencies: Chronic granulomatous disease and leukocyte adhesion   study of a new syndrome. Minn Med 40:309, 1957.
                  deficiency. Curr Opin Hematol 14:29, 2007.            378. Landing BH, Shirkey HS: A syndrome of recurrent infection and infiltration of viscera
                 340. Boxer LA, Hedley-Whyte ET, Stossel TP: Neutrophil action dysfunction and abnormal   by pigmented lipid histiocytes. Pediatrics 20:431, 1957.
                  neutrophil behavior. N Engl J Med 291:1093, 1974.     379. Sbarra AJ, Karnovsky ML: The biochemical basis of phagocytosis. I. Metabolic changes
                 341. Southwick FS, Dabiri GA, Stosse TP: Neutrophil actin dysfunction is a genetic disorder   during the ingestion of particles by polymorphonuclear leukocytes.  J Biol Chem
                  associated with partial impairment of neutrophil actin assembly in three family mem-  234:1355, 1959.
                  bers. J Clin Invest 82:1525, 1988.                    380. Iyer GYN, Islam MF, Quastel JH: Biochemical aspects of phagocytosis. Nature 192:535,
                 342. Malech HL, Gallin JI: Current concepts: Immunology neutrophils in human diseases. N   1961.
                  Engl J Med 317:687, 1987.                             381. Iyer GY, Quastel JH: NADPH and NADH oxidation by guinea pig polymorphonuclear
                 343. Southwick FS, Howard TH, Holbrook T, et al: The relationship between CR3 deficiency   leucocytes. Can J Biochem Physiol 41:427, 1963.
                  and neutrophil actin assembly. Blood 73:1973, 1989.    382. Baehner RL, Nathan DG: Quantitative nitroblue tetrazolium test in chronic granuloma-
                 344. Coates TD, Torkildson JC, Torres M, et al: An inherited defect of neutrophil motility   tous disease. N Engl J Med 278:971, 1968.
                  and microfilamentous cytoskeleton associated with abnormalities in 47-kD and 89-kD     383. Winkelstein JA, Marino MC, Johnston RB Jr, et al: Chronic granulomatous disease.
                  proteins. Blood 78:1338, 1991.                         Report on a national registry of 368 patients. Medicine (Baltimore) 79:155, 2000.
                 345. Howard T, Li Y, Torres M, et al: The 47-kD protein increased in neutrophil actin dys-    384. Parkos CA, Allen RA, Cochrane CG, et al: Purified cytochrome b from human gran-
                  function with 47-and 89-kD protein abnormalities is lymphocyte-specific protein.   ulocyte plasma membrane is comprised of two polypeptides with relative molecular
                  Blood 83:231, 1994.                                    weights of 91,000 and 22,000. J Clin Invest 80:732, 1987.
                 346. Howard TH, Hartwig J, Cunningham C: Lymphocyte-specific protein 1 expression in     385. Quinn MT, Mullen ML, Jesaitis AJ: Human neutrophil cytochrome b contains
                  eukaryotic cells reproduces the morphologic and motile abnormality of NAD 47/89   multiple  hemes.  Evidence for  heme  associated  with  both subunits.  J Biol Chem
                  neutrophils. Blood 91:4786, 1998.                      267:7303, 1992.
                 347. Camitta BM, Quesenberry PJ, Parkman R, et al: Bone marrow transplantation for an     386. Rotrosen D, Yeung CL, Leto TL, et al: Cytochrome b558: The flavin-binding component
                  infant with neutrophil dysfunction. Exp Hematol 5:109, 1977.  of the phagocyte NADPH oxidase. Science 256:1459, 1992.
                 348. Samuels J, Aksentijevich I, Torosyan Y, et al: Familial Mediterranean fever at the millen-    387. Segal AW, West I, Wientjes F, et al: Cytochrome b-245 is a flavocytochrome containing
                  nium. Clinical spectrum, ancient mutations, and a survey of 100 American referrals to   FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem
                  the National Institutes of Health. Medicine (Baltimore) 77:268, 1998.  J 284:781, 1992.
                 349. Siegal S: Benign paroxysmal peritonitis. Gastroenterology 12:234, 1949.    388. Sumimoto H, Sakamoto N, Nozaki M, et al: Cytochrome b558, a component of the
                 350. Drenth JP, van der Meer JW: Hereditary periodic fever. N Engl J Med 345:1748, 2001.  phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 186:1368,
                 351. Ben-Chetrit E, Levy M: Familial Mediterranean fever. Lancet 351:659, 1998.  1992.
                 352. Ancient missense mutations in a new member of the RoRet gene family are likely to cause     389. Zhen L, Yu L, Dinauer MC: Probing the role of the carboxyl terminus of the gp91phox
                  familial Mediterranean fever. The International FMF Consortium. Cell 90:797, 1997.  subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis.  J Biol
                 353. Centola M, Wood G, Frucht DM, et al: The gene for familial Mediterranean fever,   Chem 273:6575, 1998.
                  MEFV, is expressed in early leukocyte development and is regulated in response to     390. Shatwell KP, Dancis A, Cross AR, et al: The FRE1 ferric reductase of Saccharomyces
                  inflammatory mediators. Blood 95:3223, 2000.           cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240,
                 354. Ryan JG, Kastner DL: Fevers, genes, and innate immunity. Curr Top Microbiol Immunol   1996.
                  321:169, 2008.                                        391. Deleo FR, Quinn MT: Assembly of the phagocyte NADPH oxidase: Molecular interac-
                 355. Hull KM, Shoham N, Chae JJ, et al: The expanding spectrum of systemic autoinflamma-  tion of oxidase proteins. J Leukoc Biol 60:677, 1996.
                  tory disorders and their rheumatic manifestations. Curr Opin Rheumatol 15:61, 2003.    392. Segal AW: The NADPH oxidase and chronic granulomatous disease. Mol Med Today
                 356. Richards N, Schaner P, Diaz A, et al: Interaction between pyrin and the apoptotic speck   2:129, 1996.
                  protein (ASC) modulates ASC-induced apoptosis. J Biol Chem 276:39320, 2001.    393. Kanai F, Liu H, Field SJ, et al: The PX domains of p47phox and p40phox bind to lipid
                 357. Touitou I: The spectrum of Familial Mediterranean Fever (FMF) mutations. Eur J Hum   products of PI(3)K. Nat Cell Biol 3:675, 2001.
                  Genet 9:473, 2001.                                    394. Chen J, He R, Minshall RD, et al: Characterization of a mutation in the Phox homology
                 358. Schaner P, Richards N, Wadhwa A, et al: Episodic evolution of pyrin in primates:   domain of the NADPH oxidase component p40phox identifies a mechanism for nega-
                  Human mutations recapitulate ancestral amino acid states. Nat Genet 27:318, 2001.  tive regulation of superoxide production. J Biol Chem 282:30273, 2007.
                 359. Williamson LM, Hull D, Mehta R, et al: Familial Hibernian fever. Q J Med 51:469, 1982.    395. Cross AR, Jones OT: Enzymic mechanisms of superoxide production. Biochim Biophys
                 360. Lakshman R, Finn A: Neutrophil disorders and their management. J Clin Pathol 54:7,   Acta 1057:281, 1991.
                  2001.                                                 396. Heyworth PG, Curnutte JT, Rae J, et al: Hematologically important mutations: X-linked
                 361. Perlmutter DH, Colten HR: Molecular basis of complement deficiencies. Immunodefic   chronic granulomatous disease (second update). Blood Cells Mol Dis 27:16, 2001.
                  Rev 1:105, 1989.                                      397. Francke U, Ochs HD, de MB, et al: Minor Xp21 chromosome deletion in a male associ-
                 362. Kannourakis G: Glycogen storage disease. Semin Hematol 39:103, 2002.  ated with expression of Duchenne muscular dystrophy, chronic granulomatous disease,
                 363. Smith OP: Shwachman-Diamond syndrome. Semin Hematol 39:95, 2002.  retinitis pigmentosa, and McLeod syndrome. Am J Hum Genet 37:250, 1985.
                 364. Jones DH, Schmalstieg FC, Dempsey K, et al: Subcellular distribution and mobilization     398. Royer-Pokora B, Kunkel LM, Monaco AP, et al: Cloning the gene for an inherited
                  of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood 75:488, 1990.  human disorder—chronic granulomatous disease—on the basis of its chromosomal
                 365. Sapey E, Greenwood H, Walton G, et al: Phosphoinositide 3-kinase inhibition restores   location. Nature 322:32, 1986.
                  neutrophil accuracy in the elderly: Toward targeted treatments for immunosenescence.     399.  Frey D, Machler M, Seger R, et al: Gene deletion in a patient with chronic granulomatous
                  Blood 123:239, 2014.                                   disease and McLeod syndrome: Fine mapping of the Xk gene locus. Blood 71:252, 1988.
                 366. Brayton RG, Stokes PE, Schwartz MS, et al: Effect of alcohol and various diseases on     400. de Boer M., Bolscher BG, Dinauer MC, et al: Splice site mutations are a common cause
                  leukocyte mobilization, phagocytosis and intracellular bacterial killing. N Engl J Med   of X-linked chronic granulomatous disease. Blood 80:1553, 1992.
                  282:123, 1970.                                        401. Curnutte JT, Orkin S, Dinauer MC: Genetic disorders of phagocyte function, in The
                 367. Oseas RS, Allen J, Yang HH, et al: Mechanism of dexamethasone inhibition of che-  Molecular Basis of Blood Diseases, 2nd ed, edited by Stammatoyannopoulos G, p 493.
                  motactic factor induced granulocyte aggregation. Blood 59:265, 1982.  WB Saunders, Philadelphia, 1994.
                 368. Dale DC, Fauci AS, Wolff SM: Alternate-day prednisone. Leukocyte kinetics and sus-    402. Roos D, de BM, Kuribayashi F, et al: Mutations in the X-linked and autosomal recessive
                  ceptibility to infections. N Engl J Med 291:1154, 1974.  forms of chronic granulomatous disease. Blood 87:1663, 1996.
                 369. Boxer LA, Allen JM, Baehner RL: Diminished polymorphonuclear leukocyte adher-    403. Rae J, Newburger PE, Dinauer MC, et al: X-Linked chronic granulomatous disease:
                  ence. Function dependent on release of cyclic AMP by endothelial cells after stimula-  Mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst
                  tion of beta-receptors by epinephrine. J Clin Invest 66:268, 1980.  oxidase. Am J Hum Genet 62:1320, 1998.








          Kaushansky_chapter 66_p1005-1042.indd   1040                                                                  9/21/15   10:48 AM
   1060   1061   1062   1063   1064   1065   1066   1067   1068   1069   1070