Page 1198 - Williams Hematology ( PDFDrive )
P. 1198

1172  Part IX:  Lymphocytes and Plasma Cells  Chapter 75:  Functions of B Lymphocytes and Plasma Cells in Immunoglobulin Production     1173




                    43.  Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous     78.  Dudley DD, Chaudhuri J, Bassing CH, Alt FW: Mechanism and control of V(D)
                     DNA end-joining pathway. Annu Rev Biochem 79:181, 2010.  J recombination versus class switch recombination: Similarities and differences. Adv
                    44.  Rooney S, Chaudhuri J, Alt FW: The role of the non-homologous end-joining pathway   Immunol 86:43, 2005.
                     in lymphocyte development. Immunol Rev 200:115, 2004.    79.  Revy P, Muto T, Levy Y, et al: Activation-induced cytidine deaminase (AID) defi-
                    45.  Gostissa M, Alt FW, Chiarle R: Mechanisms that promote and suppress chromosomal   ciency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell
                     translocations in lymphocytes. Annu Rev Immunol 29:319, 2011.  102:565, 2000.
                    46.  Nussenzweig A, Nussenzweig MC: Origin of chromosomal translocations in lymphoid     80.  Zahn A, Eranki AK, Patenaude AM, et al: Activation induced deaminase C-terminal
                     cancer. Cell 141:27, 2010.                            domain links DNA breaks to end protection and repair during class switch recombina-
                    47.  Helmink  BA,  Sleckman  BP:  The  response  to  and  repair  of  RAG-mediated  DNA   tion. Proc Natl Acad Sci U S A 111:E988, 2014.
                       double-strand breaks. Annu Rev Immunol 30:175, 2012.    81.  Imai K, Slupphaug G, Lee WI, et al: Human uracil-DNA glycosylase deficiency asso-
                    48.  Steen SB, Gomelsky L, Speidel SL, Roth DB: Initiation of V(D)J recombination in vivo:   ciated with profoundly impaired immunoglobulin class-switch  recombination.  Nat
                     Role of recombination signal sequences in formation of single and paired double-   Immunol 4:1023, 2003.
                     strand breaks. EMBO J 16:2656, 1997.                 82.  Kaji T, Furukawa K, Ishige A, et al: Both mutated and unmutated memory B cells accu-
                    49.  Jones JM, Simkus C: The roles of the RAG1 and RAG2 “non-core” regions in V(D)J   mulate mutations in the course of the secondary response and develop a new antibody
                     recombination and lymphocyte development. Arch Immunol Ther Exp (Warsz) 57:105,   repertoire optimally adapted to the secondary stimulus. Int Immunol 25:683, 2013.
                     2009.                                                83.  Michael N, Martin TE, Nicolae D, et al: Effects of sequence and structure on the hyper-
                    50.  Tsai CL, Drejer AH, Schatz DG: Evidence of a critical architectural function for the   mutability of immunoglobulin genes. Immunity 16:123, 2002.
                     RAG proteins  in end processing, protection, and joining in V(D)J  recombination.     84.  Di Noia JM, Neuberger MS: Molecular mechanisms of antibody somatic hypermuta-
                     Genes Dev 16:1934, 2002.                              tion. Annu Rev Biochem 76:1, 2007.
                    51.  Ciubotaru M, Trexler AJ, Spiridon LN, et al: RAG and HMGB1 create a large bend in     85.  Peled JU, Kuang FL, Iglesias-Ussel MD, et al: The biochemistry of somatic hypermuta-
                     the 23RSS in the V(D)J recombination synaptic complexes. Nucleic Acids Res 41:2437,   tion. Annu Rev Immunol 26:481, 2008.
                     2013.                                                86.  Muramatsu M, Kinoshita K, Fagarasan S, et al: Class switch recombination and hyper-
                    52.  Schatz DG, Spanopoulou E: Biochemistry of V(D)J recombination. Curr Top Microbiol   mutation require activation-induced cytidine deaminase (AID), a potential RNA edit-
                     Immunol 290:49, 2005.                                 ing enzyme. Cell 102:553, 2000.
                    53.  Goodarzi AA, Jeggo PA: The repair and signaling responses to DNA double-strand     87.  Buerstedde JM, Alinikula J, Arakawa H, et al: Targeting of somatic hypermutation by
                     breaks. Adv Genet 82:1, 2013.                         immunoglobulin enhancer and enhancer-like sequences. PLoS Biol 12:e1001831, 2014.
                    54.  Khanna KK, Jackson SP: DNA double-strand breaks: Signaling, repair and the cancer     88.  Aoufouchi S, Faili A, Zober C, et al: Proteasomal degradation restricts the nuclear life-
                     connection. Nat Genet 27:247, 2001.                   span of AID. J Exp Med 205:1357, 2008.
                    55.  Le Deist F, Poinsignon C, Moshous D, et al: Artemis sheds new light on V(D)J recom-    89.  Delker RK, Zhou Y, Strikoudis A, et al: Solubility-based genetic screen identifies RING
                     bination. Immunol Rev 200:142, 2004.                  finger protein 126 as an E3 ligase for activation-induced cytidine deaminase. Proc Natl
                    56.  Gu Y, Sekiguchi J, Gao Y, et al: Defective embryonic neurogenesis in Ku-deficient but   Acad Sci U S A 110:1029, 2013.
                     not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci     90.  Storb U, Shen HM, Michael N, Kim N: Somatic hypermutation of immunoglobulin and
                     U S A 97:2668, 2000.                                  non-immunoglobulin genes. Philos Trans R Soc Lond B Biol Sci 356:13, 2001.
                    57.  Surucu B, Bozulic L, Hynx D, et al: In vivo analysis of protein kinase B (PKB)/Akt reg-    91.  Allen CD, Cyster JG: Follicular dendritic cell networks of primary follicles and germi-
                     ulation in DNA-PKcs-null mice reveals a role for PKB/Akt in DNA damage response   nal centers: Phenotype and function. Semin Immunol 20:14, 2008.
                     and tumorigenesis. J Biol Chem 283:30025, 2008.      92.  Cook GP, Tomlinson IM: The human immunoglobulin VH repertoire. Immunol Today
                    58.  Al-Hakim A, Escribano-Diaz C, Landry MC, et al: The ubiquitous role of ubiquitin in   16:237, 1995.
                     the DNA damage response. DNA Repair (Amst) 9:1229, 2010.    93.  Kipps TJ: Human B cell biology. Int Rev Immunol 15:243, 1997.
                    59.  Johnson K, Chaumeil J, Skok JA: Epigenetic regulation of V(D)J recombination. Essays     94.  Frippiat JP, Williams SC, Tomlinson IM, et al: Organization of the human immuno-
                     Biochem 48:221, 2010.                                 globulin lambda light-chain locus on chromosome 22q11.2. Hum Mol Genet 4:983,
                    60.  Sleckman BP, Oltz EM: Preparing targets for V(D)J recombinase: Transcription paves   1995.
                     the way. J Immunol 188:7, 2012.                      95.  Kipps TJ, Carson DA: Autoantibodies in chronic lymphocytic leukemia and related
                    61.  Subrahmanyam R, Sen R: Epigenetic features that regulate IgH locus recombination   systemic autoimmune diseases. Blood 81:2475, 1993.
                     and expression. Curr Top Microbiol Immunol 356:39, 2012.    96.  Jefferis R, Lefranc MP: Human immunoglobulin allotypes: Possible implications for
                    62.  Chao J, Rothschild G, Basu U: Ubiquitination events that regulate recombination of   immunogenicity. MAbs 1:332, 2009.
                     immunoglobulin Loci gene segments. Front Immunol 5:100, 2014.    97.  Schanfield MS, Ferrell RE, Hossaini AA, et al: Immunoglobulin allotypes in Southwest
                    63.  Grazini U, Zanardi F, Citterio E, et al: The RING domain of RAG1 ubiquitylates his-  Asia: Populations at the crossroads. Am J Hum Biol 20:671, 2008.
                     tone H3: A novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell     98.  Pandey JP: Immunoglobulin GM and KM allotypes and vaccine immunity. Vaccine
                     37:282, 2010.                                         19:613, 2000.
                    64.  Jones JM, Bhattacharyya A, Simkus C, et al: The RAG1 V(D)J recombinase/ubiquitin     99.  Muratori P, Sutherland SE, Muratori L, et al: Immunoglobulin GM and KM allotypes
                     ligase promotes ubiquitylation of acetylated, phosphorylated histone 3.3. Immunol Lett   and prevalence of anti-LKM1 autoantibodies in patients with hepatitis C virus infec-
                     136:156, 2011.                                        tion. J Virol 80:5097, 2006.
                    65.  Kassmeier MD, Mondal K, Palmer VL, et al: VprBP binds full-length RAG1 and is     100. Magdelaine-Beuzelin C, Vermeire S, Goodall M, et al: IgG1 heavy chain-coding gene
                     required for B-cell development and V(D)J recombination fidelity. EMBO J 31:945,   polymorphism (G1m allotypes) and development of antibodies-to-infliximab. Pharma-
                     2012.                                                 cogenet Genomics 19:383, 2009.
                    66.  Simkus C, Bhattacharyya A, Zhou M, et al: Correlation between recombinase activating     101. Etto TL, Stewart LA, Muirhead J, et al: Kappa immunoglobulin light chain polymor-
                     gene 1 ubiquitin ligase activity and V(D)J recombination. Immunology 128:206, 2009.  phisms and survival after allogeneic transplantation for B-cell malignancies: A poten-
                    67.  Jiang H, Chang FC, Ross AE, et al: Ubiquitylation of RAG-2 by Skp2-SCF links destruc-  tial graft-vs-leukaemia target. Tissue Antigens 69:56, 2007.
                     tion of the V(D)J recombinase to the cell cycle. Mol Cell 18:699, 2005.    102. van der Burg M, Barendregt BH, van Gastel-Mol EJ, et al: Unraveling of the polymor-
                    68.  Rassenti LZ, Kipps TJ: Lack of allelic exclusion in B cell chronic lymphocytic leukemia.   phic C lambda 2-C lambda 3 amplification and the Ke+Oz– polymorphism in the
                     J Exp Med 185:1435, 1997.                             human Ig lambda locus. J Immunol 169:271, 2002.
                    69.  Tsuganezawa K, Kiyokawa N, Matsuo Y, et al: Flow cytometric diagnosis of the cell     103. Shimizu Y, Hendershot LM: Organization of the functions and components of the
                     lineage and developmental stage of acute lymphoblastic leukemia by novel monoclonal   endoplasmic reticulum. Adv Exp Med Biol 594:37, 2007.
                     antibodies specific to human pre-B-cell receptor. Blood 92:4317, 1998.    104. Appenzeller-Herzog C, Ellgaard L: The human PDI family: Versatility packed into a
                    70.  Bankovich AJ, Raunser S, Juo ZS, et al: Structural insight into pre-B cell receptor func-  single fold. Biochim Biophys Acta 1783:535, 2008.
                     tion. Science 316:291, 2007.                         105. van Anken E, Pena F, Hafkemeijer N, et al: Efficient IgM assembly and secretion require
                    71.  Corcos D, Dunda O, Butor C, et al: Pre-B-cell development in the absence of lambda 5   the plasma cell induced endoplasmic reticulum protein pERp1. Proc Natl Acad Sci U S A
                     in transgenic mice expressing a heavy-chain disease protein. Curr Biol 5:1140, 1995.  106:17019, 2009.
                    72.  Minegishi Y, Coustan-Smith E, Wang YH, et al: Mutations in the human lambda5/14.1     106. Anelli T, Ceppi S, Bergamelli L, et al: Sequential steps and checkpoints in the early
                     gene result in B cell deficiency and agammaglobulinemia. J Exp Med 187:71, 1998.  exocytic compartment during secretory IgM biogenesis. EMBO J 26:4177, 2007.
                    73.  Stavnezer J, Guikema JE, Schrader CE: Mechanism and regulation of class switch     107. Reddy PS, Corley RB: The contribution of ER quality control to the biologic functions
                     recombination. Annu Rev Immunol 26:261, 2008.         of secretory IgM. Immunol Today 20:582, 1999.
                    74.  Ferrari SPlebani A: Cross-talk between CD40 and CD40L: Lessons from primary     108. Frey S, Haslbeck M, Hainzl O, Buchner J: Synthesis and characterization of a functional
                     immune deficiencies. Curr Opin Allergy Clin Immunol 2:489, 2002.  intact IgG in a prokaryotic cell-free expression system. Biol Chem 389:37, 2008.
                    75.  Cerutti A: The regulation of IgA class switching. Nat Rev Immunol 8:421, 2008.    109. Rudd PM, Elliott T, Cresswell P, et al: Glycosylation and the immune system. Science
                    76.  Mora JR, von Andrian UH: Differentiation and homing of IgA-secreting cells. Mucosal   291:2370, 2001.
                     Immunol 1:96, 2008.                                  110. Jefferis R: Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev
                    77.  Yamane A, Robbiani DF, Resch W, et al: RPA accumulation during class switch recom-  Drug Discov 8:226, 2009.
                     bination represents 5′-3′ DNA-end resection during the S-G2/M phase of the cell cycle.     111. Johnston RJ, Poholek AC, DiToro D, et al: Bcl6 and Blimp-1 are reciprocal and antago-
                     Cell Rep 3:138, 2013.                                 nistic regulators of T follicular helper cell differentiation. Science 325:1006, 2009.







          Kaushansky_chapter 75_p1159-1174.indd   1173                                                                  9/21/15   12:12 PM
   1193   1194   1195   1196   1197   1198   1199   1200   1201   1202   1203