Page 1823 - Williams Hematology ( PDFDrive )
P. 1823

1798           Part XI:  Malignant Lymphoid Diseases                                                                                                                                  Chapter 109:  Macroglobulinemia            1799




               Surveillance, Epidemiology, and End Results (SEER) database involving     25.  Ackroyd S, O’Connor SJM, Owen RG: Rarity of IgH translocations in Waldenström
               7744 WM patients showed that the relative survival of WM patients has   macroglobulinemia. Cancer Genet Cytogenet 163:77, 2005.
               improved over time. Patients diagnosed during the years 2001 to 2010     26.  Avet-Loiseau H, Garand R, Lode L, et al: 14q32 translocations discriminate IgM multi-
                                                                         ple myeloma from Waldenström’s macroglobulinemia. Semin Oncol 30:153, 2003.
               had higher 5-year (78 percent vs. 67 percent) and 10-year (66 percent     27.  Braggio E, Keats JJ, Leleu X, et al: High-resolution genomic analysis in Waldenström’s
               vs. 49 percent) relative survival rates versus patients diagnosed during   macroglobulinemia identifies disease-specific and common abnormalities with mar-
                                                                         ginal zone lymphomas. Clin Lymphoma Myeloma 9:39, 2009.
                                198
               the years 1980 to 2000.  A Greek study that included 345 patients with     28.  Schop RF, Kuehl WM, Van Wier SA, et al: Waldenström macroglobulinemia neoplastic
               WM failed to show any overall or cause-specific survival improvement   cells lack immunoglobulin heavy chain locus translocations but have frequent 6q dele-
               in recent years, although the study might have been too underpowered   tions. Blood 100:2996, 2002.
                                     199
               to detect any expected benefit.  A Swedish study of 1555 patients diag-    29.  Hunter ZR, Xu L, Yang G, et al: The genomic landscape of Waldenström’s macroglob-
               nosed with WM between 1980 and 2005 showed that the 5-year relative   ulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 muta-
                                                                         tions,  and  small  somatic  deletions  associated  with  B-cell  lymphomagenesis.  Blood
               survival rate improved from 57 percent in 1980 to 1985 to 78 percent in   123:1637, 2014.
               2001 to 2005. 200                                        30.  Nguyen-Khac F, Lambert J, Chapiro E, et al: Chromosomal aberrations and their prog-
                                                                         nostic value in a series of 174 untreated patients with Waldenström’s macroglobuline-
                                                                         mia. Haematologica 98:649, 2013.
                                                                        31.  Braggio E, Keats JJ, Leleu X, et al: Identification of copy number abnormalities and
               REFERENCES                                                inactivating mutations in two negative regulators of nuclear factor-kappaB signaling
                                                                         pathways in Waldenström’s macroglobulinemia. Cancer Res 69:3579, 2009.
                 1.  Owen RG, Treon SP, Al-Katib A, et al: Clinicopathological definition of Waldenström’s     32.  Leleu X, Eeckhoute J, Jia X, et al: Targeting NF-kappaB in Waldenström macroglobu-
                  macroglobulinemia: Consensus Panel Recommendations from the Second Interna-  linemia. Blood 111:5068, 2008.
                  tional Workshop on Waldenström’s macroglobulinemia. Semin Oncol 30:110, 2003.    33.  Treon SP, Hunter ZR, Matous J, et al: Multicenter clinical trial of bortezomib in relapsed/
                 2.  Harris NL, Jaffe ES, Stein H, et al: A revised European-American classification of lym-  refractory Waldenström’s macroglobulinemia: results of WMCTG Trial 03-248. Clin
                  phoid neoplasms: A proposal from the International Lymphoma Study Group. Blood   Cancer Res 13:3320, 2007.
                  84:1361, 1994.                                        34.  Treon SP, Tripsas CK, Meid K, et al: Carfilzomib, rituximab and dexamethasone
                 3.  Harris NL, Jaffe ES, Diebold J, et al: The World Health Organization classification of   (CaRD) is active and offers a neuropathy-sparing approach for proteasome-inhibitor
                  neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical   based therapy in Waldenström’s macroglobulinemia. Blood 124:503, 2014.
                  Advisory Committee meeting, Airlie House,  Virginia, November, 1997.  Ann Oncol     35.  Treon SP, Xu L, Yang G, et al: MYD88 L265P somatic mutation in Waldenström’s mac-
                  10:1419, 1999.                                         roglobulinemia. N Engl J Med 367:826, 2012.
                 4.  Groves FD, Travis LB, Devesa SS, et al: Waldenström’s macroglobulinemia: Incidence     36.  Xu L, Hunter Z, Yang G, et al: MYD88 L265P in Waldenström macroglobulinemia,
                  patterns in the United States, 1988–1994. Cancer 82:1078, 1998.  immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative
                 5.  Herrinton LJ, Weiss NS: Incidence of Waldenström’s macroglobulinemia.  Blood   disorders using conventional and quantitative allele-specific polymerase chain reaction.
                  82:3148, 1993.                                         Blood 121:2051, 2013.
                 6.  Hanzis C, Ojha RP, Hunter  Z, et al: Associated malignancies  in patients with       37.  Varettoni M, Arcaini L, Zibellini S, et al: Prevalence and clinical significance of the
                  Waldenström’s macroglobulinemia and their kin. Clin Lymphoma Myeloma Leuk 11:88,   MYD88 L265P somatic mutation in Waldenström macroglobulinemia, and related
                  2011.                                                  lymphoid neoplasms. Blood 121: 2522, 2013.
                 7.  Bjornsson OG, Arnason A, Gudmunosson S, et al: Macroglobulinaemia in an Icelandic     38.  Jiménez C, Sebastián E, Del Carmen Chillón M, et al: MYD88 L265P is a marker highly
                  family. Acta Med Scand 203:283, 1978.                  characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia
                 8.  Renier G, Ifrah N, Chevailler A, et al: Four brothers with Waldenström’s macroglobu-  27:1722, 2013.
                  linemia. Cancer 64:1554, 1989.                        39.  Poulain S, Roumier C, Decambron A, et al: MYD88 L265P mutation in Waldenström’s
                 9.  Treon SP, Hunter ZR, Aggarwal A, et al: Characterization of familial Waldenström’s   macroglobulinemia. Blood 121: 4504, 2013.
                  macroglobulinemia. Ann Oncol 17:488, 2006.            40.  Ansell SM, Hodge LS, Secreto FJ, et al: Activation of TAK1 by MYD88 L265P drives
                 10.  Ogmundsdottir HM, Sveinsdottir S, Sigfusson A, et al: Enhanced B cell survival in   malignant B-cell growth in Non-Hodgkin lymphoma. Blood Cancer J 4:e183, 2014.
                  familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin Exp     41.  Ngo VN, Young RM, Schmitz R, et al: Oncogenically active MYD88 mutations in
                  Immunol 117:252, 1999.                                 human lymphoma. Nature 470:115, 2011.
                 11.  Santini GF, Crovatto M, Modolo ML, et al: Waldenström macroglobulinemia: A role of     42.  Landgren O, Staudt L: MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med
                  HCV infection? Blood 82:2932, 1993.                    367:2255, 2012.
                 12.  Silvestri F, Barillari G, Fanin R, et al: Risk of hepatitis C virus infection, Waldenström’s     43.  Yang G, Zhou Y, Liu X, et al: A mutation in MYD88 (L265P) supports the survival of
                  macroglobulinemia, and monoclonal gammopathies. Blood 88:1125, 1996.  lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström mac-
                 13.  Leleu X, O’Connor K, Ho A, et al: Hepatitis C viral infection is not associated with   roglobulinemia. Blood 122:1222, 2013.
                  Waldenström’s macroglobulinemia. Am J Hematol 82:83, 2007.    44.  Watters T, Kenny EF, O’Neill LAJ: Structure, function and regulation of the Toll/IL-1
                 14.  Swerdlow SH, Campo E, Harris NL, et al., eds:  WHO  Classification  of  Tumours  of    receptor adaptor proteins. Immunol Cell Biol 85: 411, 2007.
                  Haematopoietic and Lymphoid Tissues, 4th ed. IARC, Lyon, 2008.    45.  Cohen L, Henzel WJ, Baeuerie PA. IKAP is a scaffold protein of the IkappaB kinase
                 15.  Smith BR, Robert NJ, Ault KA. In Waldenström’s macroglobulinemia the quantity of   complex. Nature 395:292, 1998.
                  detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood     46.  Loiarro M, Gallo G, Fanto N, et al: Identification of critical residues of the MYD88 death
                  61:911, 1983.                                          domain involved in the recruitment of downstream kinases. J Biol Chem 284: 28093, 2009.
                 16.  Treon SP. How I treat Waldenström’s macroglobulinemia. Blood 114:2375, 2009.    47.  Lin SC, Lo YC, Wu H: Helical assembly in the MYD88-IRAK4-IRAK2 complex in TLR/
                 17.  Preud’homme JL, Seligmann M. Immunoglobulins on the surface of lymphoid cells in   IL-1R signaling. Nature 465:885, 2010.
                  Waldenström’s macroglobulinemia. J Clin Invest 51:701, 1972.    48.  Kawagoe T, Sato S, Matsushita K, et al: Sequential control of Toll-like receptor depen-
                 18.  San Miguel JF, Vidriales MB, Ocio E, et al: Immunophenotypic analysis of Walden-  dent responses by IRAK1 and IRAK2. Nat Immunol 9:684, 2008.
                  ström’s macroglobulinemia. Semin Oncol 30:187, 2003.    49.  Leleu X, Eeckhoute J, Jia X, et al: Targeting NF-kappaB in Waldenström macroglobu-
                 19.  Hunter ZR, Branagan AR, Manning R, et al: CD5, CD10, and CD23 expression in     linemia. Blood 111: 5068, 2008.
                  Waldenstrom’s macroglobulinemia. Clin Lymphoma 5:246, 2005.    50.  Treon SP, Cao Y, Xu L, et al: Somatic mutations in MYD88 and CXCR4 are determi-
                 20.  Paiva B, Montes MC, García-Sanz R, et al: Multiparameter flow cytometry for the iden-  nants of clinical presentation and overall survival in Waldenström macroglobulinemia.
                  tification of the Waldenström’s clone in IgM MGUS and Waldenström’s Macroglobu-  Blood 123:2791, 2014.
                  linemia: New criteria for differential diagnosis and risk stratification. Leukemia 28:166,     51.  Roccaro A, Sacco A, Jiminez C, et al: C1013G/CXCR4 acts as a driver mutation of
                  2013.                                                  tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma.
                 21.  Wagner SD, Martinelli V, Luzzatto L: Similar patterns of V kappa gene usage but dif-  Blood 123:4120, 2014.
                  ferent degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia,     52.  Poulain S, Roumier C, Doye E, et al: Genomic landscape of CXCR4 mutations in
                  Waldenström’s macroglobulinemia, and myeloma. Blood 83:3647, 1994.  Waldenström’s macroglobulinemia. Blood (ASH Annual Meeting Abstracts) 122(21)
                 22.  Aoki H, Takishita M, Kosaka M, Saito S. Frequent somatic mutations in D and/or JH   Abstract 1610, 2014.
                  segments of Ig gene in Waldenström’s macroglobulinemia and chronic lymphocytic     53.  Busillo JM, Amando S, Sengupta R, et al: Site-specific phosphorylation of CXCR4 is
                  leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood 85:1913, 1995.  dynamically regulated by multiple kinases and results in differential modulation of
                 23.  Shiokawa S, Suehiro Y, Uike N, Muta K, Nishimura J: Sequence and expression analyses   CXCR4 signaling. J Biol Chem 285:7805, 2010.
                  of mu and delta transcripts in patients with Waldenström’s macroglobulinemia. Am J     54.  Dotta L, Tassone L, Badolato R. Clinical and genetic features of warts, hypogammaglobu-
                  Hematol 68:139, 2001.                                  linemia, infections and myelokathexis (WHIM) syndrome. Curr Mol Med 11:317, 2011.
                 24.  Sahota SS, Forconi F, Ottensmeier CH, et al: Typical Waldenstrom macroglobulinemia     55.  Cao Y, Hunter ZR, Liu X, et al: The WHIM-like CXCR4(S338X) somatic mutation acti-
                  is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype   vates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the
                  switch events. Blood 100:1505, 2002.                   treatment of Waldenström’s macroglobulinemia. Leukemia 29:169, 2015.







          Kaushansky_chapter 109_p1785-1802.indd   1798                                                                 9/21/15   12:31 PM
   1818   1819   1820   1821   1822   1823   1824   1825   1826   1827   1828