Page 1823 - Williams Hematology ( PDFDrive )
P. 1823
1798 Part XI: Malignant Lymphoid Diseases Chapter 109: Macroglobulinemia 1799
Surveillance, Epidemiology, and End Results (SEER) database involving 25. Ackroyd S, O’Connor SJM, Owen RG: Rarity of IgH translocations in Waldenström
7744 WM patients showed that the relative survival of WM patients has macroglobulinemia. Cancer Genet Cytogenet 163:77, 2005.
improved over time. Patients diagnosed during the years 2001 to 2010 26. Avet-Loiseau H, Garand R, Lode L, et al: 14q32 translocations discriminate IgM multi-
ple myeloma from Waldenström’s macroglobulinemia. Semin Oncol 30:153, 2003.
had higher 5-year (78 percent vs. 67 percent) and 10-year (66 percent 27. Braggio E, Keats JJ, Leleu X, et al: High-resolution genomic analysis in Waldenström’s
vs. 49 percent) relative survival rates versus patients diagnosed during macroglobulinemia identifies disease-specific and common abnormalities with mar-
ginal zone lymphomas. Clin Lymphoma Myeloma 9:39, 2009.
198
the years 1980 to 2000. A Greek study that included 345 patients with 28. Schop RF, Kuehl WM, Van Wier SA, et al: Waldenström macroglobulinemia neoplastic
WM failed to show any overall or cause-specific survival improvement cells lack immunoglobulin heavy chain locus translocations but have frequent 6q dele-
in recent years, although the study might have been too underpowered tions. Blood 100:2996, 2002.
199
to detect any expected benefit. A Swedish study of 1555 patients diag- 29. Hunter ZR, Xu L, Yang G, et al: The genomic landscape of Waldenström’s macroglob-
nosed with WM between 1980 and 2005 showed that the 5-year relative ulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 muta-
tions, and small somatic deletions associated with B-cell lymphomagenesis. Blood
survival rate improved from 57 percent in 1980 to 1985 to 78 percent in 123:1637, 2014.
2001 to 2005. 200 30. Nguyen-Khac F, Lambert J, Chapiro E, et al: Chromosomal aberrations and their prog-
nostic value in a series of 174 untreated patients with Waldenström’s macroglobuline-
mia. Haematologica 98:649, 2013.
31. Braggio E, Keats JJ, Leleu X, et al: Identification of copy number abnormalities and
REFERENCES inactivating mutations in two negative regulators of nuclear factor-kappaB signaling
pathways in Waldenström’s macroglobulinemia. Cancer Res 69:3579, 2009.
1. Owen RG, Treon SP, Al-Katib A, et al: Clinicopathological definition of Waldenström’s 32. Leleu X, Eeckhoute J, Jia X, et al: Targeting NF-kappaB in Waldenström macroglobu-
macroglobulinemia: Consensus Panel Recommendations from the Second Interna- linemia. Blood 111:5068, 2008.
tional Workshop on Waldenström’s macroglobulinemia. Semin Oncol 30:110, 2003. 33. Treon SP, Hunter ZR, Matous J, et al: Multicenter clinical trial of bortezomib in relapsed/
2. Harris NL, Jaffe ES, Stein H, et al: A revised European-American classification of lym- refractory Waldenström’s macroglobulinemia: results of WMCTG Trial 03-248. Clin
phoid neoplasms: A proposal from the International Lymphoma Study Group. Blood Cancer Res 13:3320, 2007.
84:1361, 1994. 34. Treon SP, Tripsas CK, Meid K, et al: Carfilzomib, rituximab and dexamethasone
3. Harris NL, Jaffe ES, Diebold J, et al: The World Health Organization classification of (CaRD) is active and offers a neuropathy-sparing approach for proteasome-inhibitor
neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical based therapy in Waldenström’s macroglobulinemia. Blood 124:503, 2014.
Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 35. Treon SP, Xu L, Yang G, et al: MYD88 L265P somatic mutation in Waldenström’s mac-
10:1419, 1999. roglobulinemia. N Engl J Med 367:826, 2012.
4. Groves FD, Travis LB, Devesa SS, et al: Waldenström’s macroglobulinemia: Incidence 36. Xu L, Hunter Z, Yang G, et al: MYD88 L265P in Waldenström macroglobulinemia,
patterns in the United States, 1988–1994. Cancer 82:1078, 1998. immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative
5. Herrinton LJ, Weiss NS: Incidence of Waldenström’s macroglobulinemia. Blood disorders using conventional and quantitative allele-specific polymerase chain reaction.
82:3148, 1993. Blood 121:2051, 2013.
6. Hanzis C, Ojha RP, Hunter Z, et al: Associated malignancies in patients with 37. Varettoni M, Arcaini L, Zibellini S, et al: Prevalence and clinical significance of the
Waldenström’s macroglobulinemia and their kin. Clin Lymphoma Myeloma Leuk 11:88, MYD88 L265P somatic mutation in Waldenström macroglobulinemia, and related
2011. lymphoid neoplasms. Blood 121: 2522, 2013.
7. Bjornsson OG, Arnason A, Gudmunosson S, et al: Macroglobulinaemia in an Icelandic 38. Jiménez C, Sebastián E, Del Carmen Chillón M, et al: MYD88 L265P is a marker highly
family. Acta Med Scand 203:283, 1978. characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia
8. Renier G, Ifrah N, Chevailler A, et al: Four brothers with Waldenström’s macroglobu- 27:1722, 2013.
linemia. Cancer 64:1554, 1989. 39. Poulain S, Roumier C, Decambron A, et al: MYD88 L265P mutation in Waldenström’s
9. Treon SP, Hunter ZR, Aggarwal A, et al: Characterization of familial Waldenström’s macroglobulinemia. Blood 121: 4504, 2013.
macroglobulinemia. Ann Oncol 17:488, 2006. 40. Ansell SM, Hodge LS, Secreto FJ, et al: Activation of TAK1 by MYD88 L265P drives
10. Ogmundsdottir HM, Sveinsdottir S, Sigfusson A, et al: Enhanced B cell survival in malignant B-cell growth in Non-Hodgkin lymphoma. Blood Cancer J 4:e183, 2014.
familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin Exp 41. Ngo VN, Young RM, Schmitz R, et al: Oncogenically active MYD88 mutations in
Immunol 117:252, 1999. human lymphoma. Nature 470:115, 2011.
11. Santini GF, Crovatto M, Modolo ML, et al: Waldenström macroglobulinemia: A role of 42. Landgren O, Staudt L: MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med
HCV infection? Blood 82:2932, 1993. 367:2255, 2012.
12. Silvestri F, Barillari G, Fanin R, et al: Risk of hepatitis C virus infection, Waldenström’s 43. Yang G, Zhou Y, Liu X, et al: A mutation in MYD88 (L265P) supports the survival of
macroglobulinemia, and monoclonal gammopathies. Blood 88:1125, 1996. lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström mac-
13. Leleu X, O’Connor K, Ho A, et al: Hepatitis C viral infection is not associated with roglobulinemia. Blood 122:1222, 2013.
Waldenström’s macroglobulinemia. Am J Hematol 82:83, 2007. 44. Watters T, Kenny EF, O’Neill LAJ: Structure, function and regulation of the Toll/IL-1
14. Swerdlow SH, Campo E, Harris NL, et al., eds: WHO Classification of Tumours of receptor adaptor proteins. Immunol Cell Biol 85: 411, 2007.
Haematopoietic and Lymphoid Tissues, 4th ed. IARC, Lyon, 2008. 45. Cohen L, Henzel WJ, Baeuerie PA. IKAP is a scaffold protein of the IkappaB kinase
15. Smith BR, Robert NJ, Ault KA. In Waldenström’s macroglobulinemia the quantity of complex. Nature 395:292, 1998.
detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood 46. Loiarro M, Gallo G, Fanto N, et al: Identification of critical residues of the MYD88 death
61:911, 1983. domain involved in the recruitment of downstream kinases. J Biol Chem 284: 28093, 2009.
16. Treon SP. How I treat Waldenström’s macroglobulinemia. Blood 114:2375, 2009. 47. Lin SC, Lo YC, Wu H: Helical assembly in the MYD88-IRAK4-IRAK2 complex in TLR/
17. Preud’homme JL, Seligmann M. Immunoglobulins on the surface of lymphoid cells in IL-1R signaling. Nature 465:885, 2010.
Waldenström’s macroglobulinemia. J Clin Invest 51:701, 1972. 48. Kawagoe T, Sato S, Matsushita K, et al: Sequential control of Toll-like receptor depen-
18. San Miguel JF, Vidriales MB, Ocio E, et al: Immunophenotypic analysis of Walden- dent responses by IRAK1 and IRAK2. Nat Immunol 9:684, 2008.
ström’s macroglobulinemia. Semin Oncol 30:187, 2003. 49. Leleu X, Eeckhoute J, Jia X, et al: Targeting NF-kappaB in Waldenström macroglobu-
19. Hunter ZR, Branagan AR, Manning R, et al: CD5, CD10, and CD23 expression in linemia. Blood 111: 5068, 2008.
Waldenstrom’s macroglobulinemia. Clin Lymphoma 5:246, 2005. 50. Treon SP, Cao Y, Xu L, et al: Somatic mutations in MYD88 and CXCR4 are determi-
20. Paiva B, Montes MC, García-Sanz R, et al: Multiparameter flow cytometry for the iden- nants of clinical presentation and overall survival in Waldenström macroglobulinemia.
tification of the Waldenström’s clone in IgM MGUS and Waldenström’s Macroglobu- Blood 123:2791, 2014.
linemia: New criteria for differential diagnosis and risk stratification. Leukemia 28:166, 51. Roccaro A, Sacco A, Jiminez C, et al: C1013G/CXCR4 acts as a driver mutation of
2013. tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma.
21. Wagner SD, Martinelli V, Luzzatto L: Similar patterns of V kappa gene usage but dif- Blood 123:4120, 2014.
ferent degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, 52. Poulain S, Roumier C, Doye E, et al: Genomic landscape of CXCR4 mutations in
Waldenström’s macroglobulinemia, and myeloma. Blood 83:3647, 1994. Waldenström’s macroglobulinemia. Blood (ASH Annual Meeting Abstracts) 122(21)
22. Aoki H, Takishita M, Kosaka M, Saito S. Frequent somatic mutations in D and/or JH Abstract 1610, 2014.
segments of Ig gene in Waldenström’s macroglobulinemia and chronic lymphocytic 53. Busillo JM, Amando S, Sengupta R, et al: Site-specific phosphorylation of CXCR4 is
leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood 85:1913, 1995. dynamically regulated by multiple kinases and results in differential modulation of
23. Shiokawa S, Suehiro Y, Uike N, Muta K, Nishimura J: Sequence and expression analyses CXCR4 signaling. J Biol Chem 285:7805, 2010.
of mu and delta transcripts in patients with Waldenström’s macroglobulinemia. Am J 54. Dotta L, Tassone L, Badolato R. Clinical and genetic features of warts, hypogammaglobu-
Hematol 68:139, 2001. linemia, infections and myelokathexis (WHIM) syndrome. Curr Mol Med 11:317, 2011.
24. Sahota SS, Forconi F, Ottensmeier CH, et al: Typical Waldenstrom macroglobulinemia 55. Cao Y, Hunter ZR, Liu X, et al: The WHIM-like CXCR4(S338X) somatic mutation acti-
is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype vates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the
switch events. Blood 100:1505, 2002. treatment of Waldenström’s macroglobulinemia. Leukemia 29:169, 2015.
Kaushansky_chapter 109_p1785-1802.indd 1798 9/21/15 12:31 PM

