Page 297 - Williams Hematology ( PDFDrive )
P. 297

272            Part IV:  Molecular and Cellular Hematology                                                                                            Chapter 18:  Hematopoietic Stem Cells, Progenitors, and Cytokines            273




                   Once bipotent GMPs differentiate, they further restrict their devel-    25.  Pluznik DH, Sachs L: The cloning of normal “mast” cells in tissue culture. J Cell Physiol
               opmental potential. Monocytic progenitors are characterized by a pre-  66:319, 1965.
               dominance of PU.1, whereas granulocytic cells by members of the C/    26.  Bradley TR, Metcalf D: The growth of mouse bone marrow cells in vitro. Aust J Exp Biol
                                                                         Med Sci 44:287, 1966.
               EBP family—C/EBPα and C/EBPε—are vital for the expression of neu-    27.  Silver RK, Erslev AJ: The action of erythropoietin on erythroid cells in vitro. Scand J
               trophil and eosinophil granule proteins. 272,341  A recent study suggests   Haematol 13:338, 1974.
               that the developmental decision of a bipotent GMP into each of the two     28.  Hara H, Ogawa M: Erythropoietic precursors in mice with phenylhydrazine-induced
                                                                         anemia. Am J Hematol 1:453, 1976.
               lineages might be mediated by alterations in the relative levels of PU.1     29.  Metcalf D, MacDonald HR, Odartchenko N, et al: Growth of mouse megakaryocyte
               and C/EBP expression ; haploinsufficiency of PU.1 (PU.1+/−) results   colonies in vitro. Proc Natl Acad Sci U S A 72:1744, 1975.
                                342
               in a reduction in CFU-M frequency in the marrow and an increase in     30.  McLeod DL, Shreve MM, Axelrad AA: Induction of megakaryocyte colonies with
                                                                         platelet formation in vitro. Nature 261:492, 1976.
               CFU-G levels, even ameliorating the neutropenia seen in G-CSF null     31.  Vainchenker W, Bouguet J, Guichard J, et al: Megakaryocyte colony formation from
               mice. Moreover, by increasing expression of C/EBPα, a transcription   human bone marrow precursors. Blood 54:940, 1979.
               factor that drives granulocytic differentiation, G-CSF further influences     32.  Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse
                                                                         hematopoietic stem cells. Science 241:58, 1988.
               the choice between the granulocytic and monocytic lineages. How-    33.  Civin CI, Strauss LC, Fackler MJ, et al: Positive stem cell selection—Basic science. Prog
               ever, it is also clear that PU.1 plays an important role in both lineages,   Clin Biol Res 333:387;  discussion 402, 1990.
               and it is likely that additional investigation will yield new insights into     34.  Matthews W, Jordan CT, Wiegand GW, et al: A receptor tyrosine kinase specific to
                                                                         hematopoietic stem and progenitor cell-enriched populations. Cell 65:1143, 1991.
               the molecular mechanisms that establish the ordered process we term     35.  Penn PE, Jiang DZ, Fei RG, et al: Dissecting the hematopoietic microenvironment. IX.
               myelopoiesis.                                             Further characterization of murine bone marrow stromal cells. Blood 81:1205, 1993.
                                                                        36.  Kiel MJ, Yilmaz OH, Iwashita T, et al: SLAM family receptors distinguish hematopoietic
                                                                         stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109,
               REFERENCES                                                2005.
                                                                        37.  Akashi K, Traver D, Miyamoto T, et al: A clonogenic common myeloid progenitor that
                 1.  Ogawa M: Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844,   gives rise to all myeloid lineages. Nature 404:193, 2000.
                  1993.                                                 38.  Kondo M, Weissman IL, Akashi K: Identification of clonogenic common lymphoid
                 2.  Kondo M, Wagers AJ, Manz MG, et al: Biology of hematopoietic stem cells and progen-  progenitors in mouse bone marrow. Cell 91:661, 1997.
                  itors: Implications for clinical application. Annu Rev Immunol 21:759, 2003.    39.  Muta K, Krantz SB, Bondurant MC, et al: Distinct roles of erythropoietin, insulin-like
                 3.  Colvin GA, Lambert JF, Moore BE, et al: Intrinsic hematopoietic stem cell/progenitor   growth factor I, and stem cell factor in the development of erythroid progenitor cells.
                  plasticity: Inversions. J Cell Physiol 199:20, 2004.   J Clin Invest 94:34, 1994.
                 4.  Moore MA, Metcalf D: Ontogeny of the haemopoietic system: Yolk sac origin of in     40.  Nakorn TN, Miyamoto T, Weissman IL: Characterization of mouse clonogenic
                  vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol   megakaryocyte progenitors. Proc Natl Acad Sci U S A 100:205, 2003.
                  18:279, 1970.                                         41.  Abkowitz JL, Catlin SN, McCallie MT, et al: Evidence that the number of hematopoietic
                 5.  Flamme I, Frolich T, Risau W: Molecular mechanisms of vasculogenesis and embryonic   stem cells per animal is conserved in mammals. Blood 100:2665, 2002.
                  angiogenesis. J Cell Physiol 173:206, 1997.           42.  Yilmaz OH, Kiel MJ, Morrison SJ: SLAM family markers are conserved among hemato-
                 6.  Jaffredo T, Gautier R, Eichmann A, et al: Intraaortic hemopoietic cells are derived from   poietic stem cells from old and reconstituted mice and markedly increase their purity,
                  endothelial cells during ontogeny. Development 125:4575, 1998.  Blood 107:924, 2006.
                 7.  Palis J, Yoder MC: Yolk-sac hematopoiesis: The first blood cells of mouse and man. Exp     43.  Chen J, Astle CM, Harrison DE: Genetic regulation of primitive hematopoietic stem
                  Hematol 29:927, 2001.                                  cell senescence. Exp Hematol 28:442, 2000.
                 8.  Huang H, Zettergren LD, Auerbach R: In vitro differentiation of B cells and myeloid     44.  Roobrouck VD, Ulloa-Montoya F, Verfaillie CM: Self-renewal and differentiation
                  cells from the early mouse embryo and its extraembryonic yolk sac. Exp Hematol 22:19,   capacity of young and aged stem cells. Exp Cell Res 314:1937, 2008.
                  1994.                                                 45.  Dykstra B, de Haan G: Hematopoietic stem cell aging and self-renewal. Cell Tissue Res
                 9.  Cumano A, Dieterlen-Lievre F, Godin I: Lymphoid potential, probed before circulation   331:91, 2008.
                  in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907, 1996.    46.  Chambers SM, Shaw CA, Gatza C, et al: Aging hematopoietic stem cells decline in func-
                 10.  Peault B, Oberlin E, Tavian M: Emergence of hematopoietic stem cells in the human   tion and exhibit epigenetic dysregulation. PLoS Biol 5:e201, 2007.
                  embryo. C R Biol 325:1021, 2002.                      47.  Rossi DJ, Bryder D, Seita J, et al: Deficiencies in DNA damage repair limit the function
                 11.  Robin C, Ottersbach K, de Bruijn M, et al: Developmental origins of hematopoietic   of haematopoietic stem cells with age. Nature 447:725, 2007.
                  stem cells. Oncol Res 13:315, 2003.                   48.  Nijnik A, Woodbine L, Marchetti C, et al: DNA repair is limiting for haematopoietic
                 12.  Golub R, Cumano A: Embryonic hematopoiesis. Blood Cells Mol Dis 51:226, 2013.  stem cells during ageing. Nature 447:686, 2007.
                 13.  Wood HB, May G, Healy L, et al: CD34 expression patterns during early mouse devel-    49.  Mazurier F, Gan OI, McKenzie JL, et al: Lentivector-mediated clonal tracking reveals
                  opment are related to modes of blood vessel formation and reveal additional sites of   intrinsic heterogeneity in the human hematopoietic stem cell compartment and cul-
                  hematopoiesis. Blood 90:2300, 1997.                    ture-induced stem cell impairment. Blood 103:545, 2004.
                 14.  Tavian M, Coulombel L, Luton D, et al: Aorta-associated CD34+ hematopoietic cells in     50.  Mazurier F, Doedens M, Gan OI, et al: Rapid myeloerythroid repopulation after
                  the early human embryo. Blood 87:67, 1996.             intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem
                 15.  Marshall CJ, Moore RL, Thorogood P, et al: Detailed characterization of the human   cells. Nat Med 9:959, 2003.
                  aorta-gonad-mesonephros region reveals morphological polarity resembling a hemato-    51.  Cao YA, Wagers AJ, Beilhack A, et al: Shifting foci of hematopoiesis during reconstitu-
                  poietic stromal layer. Dev Dyn 215:139, 1999.          tion from single stem cells. Proc Natl Acad Sci U S A 101:221, 2004.
                16.  Marshall CJ, Kinnon C, Thrasher AJ: Polarized expression of bone morphogenetic     52.  Harrison DE: Competitive repopulation: A new assay for long-term stem cell func-
                  protein-4 in the human aorta-gonad-mesonephros region. Blood 96:1591, 2000.  tional capacity. Blood 55:77, 1980.
                 17.  Johnson GR, Moore MA: Role of stem cell migration in initiation of mouse foetal liver     53.  Nakorn TN, Traver D, Weissman IL, Akashi K: Myeloerythroid restricted progenitors
                  haemopoiesis. Nature 258:726, 1975.                    are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J Clin
                 18.  Dzierzak E, Medvinsky A: Mouse embryonic hematopoiesis. Trends Genet 11:359, 1995.  Invest 109:1579, 2002.
                 19.  Timens W, Kamps WA: Hemopoiesis in human fetal and embryonic liver. Microsc Res     54.  Larochelle A, Vormoor J, Hanenberg H, et al: Identification of primitive human
                  Tech 39:387, 1997.                                     hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Impli-
                 20.  Clapp DW, Freie B, Lee WH, et al: Molecular evidence that in situ-transduced fetal liver   cations for gene therapy. Nat Med 2:1329, 1996.
                  hematopoietic stem/progenitor cells give rise to medullary hematopoiesis in adult rats.     55.  Thanopoulou E, Cashman J, Kakagianne T, et al: Engraftment of NOD/SCID-beta2
                  Blood 86:2113, 1995.                                   microglobulin null mice with multi-lineage neoplastic cells from patients with myelo-
                 21.  Ara T, Tokoyoda K, Sugiyama T, et al: Long-term hematopoietic stem cells require   dysplastic syndrome. Blood 103:4285, 2004.
                  stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity     56.  Ito M, Hiramatsu H, Kobayashi K, et al: NOD/SCID/gamma(c)(null) mouse: An excel-
                  19:257, 2003.                                          lent recipient mouse model for engraftment of human cells. Blood 100:3175, 2002.
                 22.  Nagasawa  T,  Hirota  S,  Tachibana  K,  et  al:  Defects  of  B-cell  lymphopoiesis  and     57.  Feuring-Buske M, Gerhard B, Cashman J, et al: Improved engraftment of human acute
                  bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature   myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice
                  382:635, 1996.                                         and in NOD/SCID mice transgenic for human growth factors. Leukemia 17:760, 2003.
                 23.  Danchakoff V: Origin of the blood cells. Development of the haematopoietic organs     58.  Tanavde VM, Malehorn MT, Lumkul R, et al: Human stem-progenitor cells from neo-
                  and regeneration of the blood cells from the standpoint of the monophyletic school.   natal cord blood have greater hematopoietic expansion capacity than those from mobi-
                  Anat Rec 10:397, 1916.                                 lized adult blood. Exp Hematol 30:816, 2002.
                 24.  Till JE, McCulloch CE: A direct measurement of the radiation sensitivity of normal     59.  Miyoshi H, Smith KA, Mosier DE, et al: Transduction of human CD34+ cells that medi-
                  mouse bone marrow cells. Radiat Res 14:213, 1961.      ate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283:682, 1999.







          Kaushansky_chapter 18_p0257-0278.indd   272                                                                   9/19/15   12:06 AM
   292   293   294   295   296   297   298   299   300   301   302