Page 297 - Williams Hematology ( PDFDrive )
P. 297
272 Part IV: Molecular and Cellular Hematology Chapter 18: Hematopoietic Stem Cells, Progenitors, and Cytokines 273
Once bipotent GMPs differentiate, they further restrict their devel- 25. Pluznik DH, Sachs L: The cloning of normal “mast” cells in tissue culture. J Cell Physiol
opmental potential. Monocytic progenitors are characterized by a pre- 66:319, 1965.
dominance of PU.1, whereas granulocytic cells by members of the C/ 26. Bradley TR, Metcalf D: The growth of mouse bone marrow cells in vitro. Aust J Exp Biol
Med Sci 44:287, 1966.
EBP family—C/EBPα and C/EBPε—are vital for the expression of neu- 27. Silver RK, Erslev AJ: The action of erythropoietin on erythroid cells in vitro. Scand J
trophil and eosinophil granule proteins. 272,341 A recent study suggests Haematol 13:338, 1974.
that the developmental decision of a bipotent GMP into each of the two 28. Hara H, Ogawa M: Erythropoietic precursors in mice with phenylhydrazine-induced
anemia. Am J Hematol 1:453, 1976.
lineages might be mediated by alterations in the relative levels of PU.1 29. Metcalf D, MacDonald HR, Odartchenko N, et al: Growth of mouse megakaryocyte
and C/EBP expression ; haploinsufficiency of PU.1 (PU.1+/−) results colonies in vitro. Proc Natl Acad Sci U S A 72:1744, 1975.
342
in a reduction in CFU-M frequency in the marrow and an increase in 30. McLeod DL, Shreve MM, Axelrad AA: Induction of megakaryocyte colonies with
platelet formation in vitro. Nature 261:492, 1976.
CFU-G levels, even ameliorating the neutropenia seen in G-CSF null 31. Vainchenker W, Bouguet J, Guichard J, et al: Megakaryocyte colony formation from
mice. Moreover, by increasing expression of C/EBPα, a transcription human bone marrow precursors. Blood 54:940, 1979.
factor that drives granulocytic differentiation, G-CSF further influences 32. Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse
hematopoietic stem cells. Science 241:58, 1988.
the choice between the granulocytic and monocytic lineages. How- 33. Civin CI, Strauss LC, Fackler MJ, et al: Positive stem cell selection—Basic science. Prog
ever, it is also clear that PU.1 plays an important role in both lineages, Clin Biol Res 333:387; discussion 402, 1990.
and it is likely that additional investigation will yield new insights into 34. Matthews W, Jordan CT, Wiegand GW, et al: A receptor tyrosine kinase specific to
hematopoietic stem and progenitor cell-enriched populations. Cell 65:1143, 1991.
the molecular mechanisms that establish the ordered process we term 35. Penn PE, Jiang DZ, Fei RG, et al: Dissecting the hematopoietic microenvironment. IX.
myelopoiesis. Further characterization of murine bone marrow stromal cells. Blood 81:1205, 1993.
36. Kiel MJ, Yilmaz OH, Iwashita T, et al: SLAM family receptors distinguish hematopoietic
stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109,
REFERENCES 2005.
37. Akashi K, Traver D, Miyamoto T, et al: A clonogenic common myeloid progenitor that
1. Ogawa M: Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844, gives rise to all myeloid lineages. Nature 404:193, 2000.
1993. 38. Kondo M, Weissman IL, Akashi K: Identification of clonogenic common lymphoid
2. Kondo M, Wagers AJ, Manz MG, et al: Biology of hematopoietic stem cells and progen- progenitors in mouse bone marrow. Cell 91:661, 1997.
itors: Implications for clinical application. Annu Rev Immunol 21:759, 2003. 39. Muta K, Krantz SB, Bondurant MC, et al: Distinct roles of erythropoietin, insulin-like
3. Colvin GA, Lambert JF, Moore BE, et al: Intrinsic hematopoietic stem cell/progenitor growth factor I, and stem cell factor in the development of erythroid progenitor cells.
plasticity: Inversions. J Cell Physiol 199:20, 2004. J Clin Invest 94:34, 1994.
4. Moore MA, Metcalf D: Ontogeny of the haemopoietic system: Yolk sac origin of in 40. Nakorn TN, Miyamoto T, Weissman IL: Characterization of mouse clonogenic
vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol megakaryocyte progenitors. Proc Natl Acad Sci U S A 100:205, 2003.
18:279, 1970. 41. Abkowitz JL, Catlin SN, McCallie MT, et al: Evidence that the number of hematopoietic
5. Flamme I, Frolich T, Risau W: Molecular mechanisms of vasculogenesis and embryonic stem cells per animal is conserved in mammals. Blood 100:2665, 2002.
angiogenesis. J Cell Physiol 173:206, 1997. 42. Yilmaz OH, Kiel MJ, Morrison SJ: SLAM family markers are conserved among hemato-
6. Jaffredo T, Gautier R, Eichmann A, et al: Intraaortic hemopoietic cells are derived from poietic stem cells from old and reconstituted mice and markedly increase their purity,
endothelial cells during ontogeny. Development 125:4575, 1998. Blood 107:924, 2006.
7. Palis J, Yoder MC: Yolk-sac hematopoiesis: The first blood cells of mouse and man. Exp 43. Chen J, Astle CM, Harrison DE: Genetic regulation of primitive hematopoietic stem
Hematol 29:927, 2001. cell senescence. Exp Hematol 28:442, 2000.
8. Huang H, Zettergren LD, Auerbach R: In vitro differentiation of B cells and myeloid 44. Roobrouck VD, Ulloa-Montoya F, Verfaillie CM: Self-renewal and differentiation
cells from the early mouse embryo and its extraembryonic yolk sac. Exp Hematol 22:19, capacity of young and aged stem cells. Exp Cell Res 314:1937, 2008.
1994. 45. Dykstra B, de Haan G: Hematopoietic stem cell aging and self-renewal. Cell Tissue Res
9. Cumano A, Dieterlen-Lievre F, Godin I: Lymphoid potential, probed before circulation 331:91, 2008.
in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907, 1996. 46. Chambers SM, Shaw CA, Gatza C, et al: Aging hematopoietic stem cells decline in func-
10. Peault B, Oberlin E, Tavian M: Emergence of hematopoietic stem cells in the human tion and exhibit epigenetic dysregulation. PLoS Biol 5:e201, 2007.
embryo. C R Biol 325:1021, 2002. 47. Rossi DJ, Bryder D, Seita J, et al: Deficiencies in DNA damage repair limit the function
11. Robin C, Ottersbach K, de Bruijn M, et al: Developmental origins of hematopoietic of haematopoietic stem cells with age. Nature 447:725, 2007.
stem cells. Oncol Res 13:315, 2003. 48. Nijnik A, Woodbine L, Marchetti C, et al: DNA repair is limiting for haematopoietic
12. Golub R, Cumano A: Embryonic hematopoiesis. Blood Cells Mol Dis 51:226, 2013. stem cells during ageing. Nature 447:686, 2007.
13. Wood HB, May G, Healy L, et al: CD34 expression patterns during early mouse devel- 49. Mazurier F, Gan OI, McKenzie JL, et al: Lentivector-mediated clonal tracking reveals
opment are related to modes of blood vessel formation and reveal additional sites of intrinsic heterogeneity in the human hematopoietic stem cell compartment and cul-
hematopoiesis. Blood 90:2300, 1997. ture-induced stem cell impairment. Blood 103:545, 2004.
14. Tavian M, Coulombel L, Luton D, et al: Aorta-associated CD34+ hematopoietic cells in 50. Mazurier F, Doedens M, Gan OI, et al: Rapid myeloerythroid repopulation after
the early human embryo. Blood 87:67, 1996. intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem
15. Marshall CJ, Moore RL, Thorogood P, et al: Detailed characterization of the human cells. Nat Med 9:959, 2003.
aorta-gonad-mesonephros region reveals morphological polarity resembling a hemato- 51. Cao YA, Wagers AJ, Beilhack A, et al: Shifting foci of hematopoiesis during reconstitu-
poietic stromal layer. Dev Dyn 215:139, 1999. tion from single stem cells. Proc Natl Acad Sci U S A 101:221, 2004.
16. Marshall CJ, Kinnon C, Thrasher AJ: Polarized expression of bone morphogenetic 52. Harrison DE: Competitive repopulation: A new assay for long-term stem cell func-
protein-4 in the human aorta-gonad-mesonephros region. Blood 96:1591, 2000. tional capacity. Blood 55:77, 1980.
17. Johnson GR, Moore MA: Role of stem cell migration in initiation of mouse foetal liver 53. Nakorn TN, Traver D, Weissman IL, Akashi K: Myeloerythroid restricted progenitors
haemopoiesis. Nature 258:726, 1975. are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J Clin
18. Dzierzak E, Medvinsky A: Mouse embryonic hematopoiesis. Trends Genet 11:359, 1995. Invest 109:1579, 2002.
19. Timens W, Kamps WA: Hemopoiesis in human fetal and embryonic liver. Microsc Res 54. Larochelle A, Vormoor J, Hanenberg H, et al: Identification of primitive human
Tech 39:387, 1997. hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Impli-
20. Clapp DW, Freie B, Lee WH, et al: Molecular evidence that in situ-transduced fetal liver cations for gene therapy. Nat Med 2:1329, 1996.
hematopoietic stem/progenitor cells give rise to medullary hematopoiesis in adult rats. 55. Thanopoulou E, Cashman J, Kakagianne T, et al: Engraftment of NOD/SCID-beta2
Blood 86:2113, 1995. microglobulin null mice with multi-lineage neoplastic cells from patients with myelo-
21. Ara T, Tokoyoda K, Sugiyama T, et al: Long-term hematopoietic stem cells require dysplastic syndrome. Blood 103:4285, 2004.
stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 56. Ito M, Hiramatsu H, Kobayashi K, et al: NOD/SCID/gamma(c)(null) mouse: An excel-
19:257, 2003. lent recipient mouse model for engraftment of human cells. Blood 100:3175, 2002.
22. Nagasawa T, Hirota S, Tachibana K, et al: Defects of B-cell lymphopoiesis and 57. Feuring-Buske M, Gerhard B, Cashman J, et al: Improved engraftment of human acute
bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice
382:635, 1996. and in NOD/SCID mice transgenic for human growth factors. Leukemia 17:760, 2003.
23. Danchakoff V: Origin of the blood cells. Development of the haematopoietic organs 58. Tanavde VM, Malehorn MT, Lumkul R, et al: Human stem-progenitor cells from neo-
and regeneration of the blood cells from the standpoint of the monophyletic school. natal cord blood have greater hematopoietic expansion capacity than those from mobi-
Anat Rec 10:397, 1916. lized adult blood. Exp Hematol 30:816, 2002.
24. Till JE, McCulloch CE: A direct measurement of the radiation sensitivity of normal 59. Miyoshi H, Smith KA, Mosier DE, et al: Transduction of human CD34+ cells that medi-
mouse bone marrow cells. Radiat Res 14:213, 1961. ate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283:682, 1999.
Kaushansky_chapter 18_p0257-0278.indd 272 9/19/15 12:06 AM

