Page 480 - Williams Hematology ( PDFDrive )
P. 480

454  Part V:  Therapeutic Principles  Chapter 30:  Regenerative Medicine: Multipotential Cell Therapy for Tissue Repair   455




                    27.  Riddell J, Gazit R, Garrison BS, et al: Reprogramming committed murine blood cells to     59.  Strauer BE, Brehm M, Zeus T, et al: Repair of infarcted myocardium by autologous
                     induced hematopoietic stem cells with defined factors. Cell 157(3):549–564, 2014.  intracoronary mononuclear bone marrow cell transplantation in humans. Circulation
                    28.  Doulatov S, Vo LT, Chou SS, et al: Induction of multipotential hematopoietic progeni-  106(15):1913–1918, 2002.
                     tors from human pluripotent stem cells via respecification of lineage-restricted precur-    60.  Assmus B, Schachinger V, Teupe C, et al: Transplantation of progenitor cells and regen-
                     sors. Cell Stem Cell 13(4):459–470, 2013.             eration  enhancement in acute myocardial infarction (TOPCARE-AMI).  Circulation
                    29.  Rideout WM 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R: Correction of a   106(24):3009–3017, 2002.
                     genetic  defect  by  nuclear  transplantation  and  combined  cell  and  gene  therapy.  Cell     61.  Assmus B, Fischer-Rasokat U, Honold J, et al: Transcoronary transplantation of func-
                     109(1):17–27, 2002.                                   tionally competent BMCs is associated with a decrease in natriuretic peptide serum lev-
                    30.  Wang L, Menendez P, Cerdan C, Bhatia M: Hematopoietic development from human   els and improved survival of patients with chronic postinfarction heart failure: Results
                     embryonic stem cell lines. Exp Hematol 33(9):987–996, 2005.  of the TOPCARE-CHD Registry. Circ Res 100(8):1234–1241, 2007.
                    31.  Ledran MH, Krassowska A, Armstrong L, et al: Efficient hematopoietic differentiation     62.  Tendera M, Wojakowski W, Ruzyllo W, et al: Intracoronary infusion of bone marrow-
                     of human embryonic stem cells on stromal cells derived from hematopoietic niches.   derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients
                     Cell Stem Cell 3(1):85–98, 2008.                      with acute STEMI and reduced left ventricular ejection fraction: Results of random-
                    32.  Szabo E, Rampalli S, Risueno RM, et al: Direct conversion of human fibroblasts to mul-  ized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected
                     tilineage blood progenitors. Nature 468(7323):521–526, 2010.  Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J
                    33.  Elcheva I, Brok-Volchanskaya V, Kumar A, et al: Direct induction of haematoendothe-  30(11):1313–1321, 2009.
                     lial programs in human pluripotent stem cells by transcriptional regulators. Nat Com-    63.  Makino S, Fukuda K, Miyoshi S, et al: Cardiomyocytes can be generated from marrow
                     mun 5:4372.                                           stromal cells in vitro. J Clin Invest 103(5):697–705, 1999.
                    34.  Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies     64.  Heldman AW, DiFede DL, Fishman JE, et al: Transendocardial mesenchymal stem cells
                     in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet   and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT ran-
                     3(4):393–403, 2014.                                   domized trial. JAMA 311(1):62–73, 2014.
                    35.  Phinney DG, Prockop DJ: Concise review: Mesenchymal stem/multipotent stromal     65.  Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM: Differentiation of
                     cells: The state of transdifferentiation and modes of tissue repair—Current views. Stem   pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91(3):189–201, 2002.
                     Cells 25(11):2896–2902, 2007.                        66.  He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ: Human embryonic stem cells develop
                    36.  Pittenger MF, Mackay AM, Beck SC, et al: Multilineage potential of adult human mes-  into  multiple  types of cardiac  myocytes:  Action  potential  characterization.  Circ Res
                     enchymal stem cells. Science 284(5411):143–147, 1999.  93(1):32–39, 2003.
                    37.  da Silva Meirelles L, Caplan AI, Nardi NB: In search of the in vivo identity of mesenchy-    67.  Yamanaka S, Blau HM: Nuclear reprogramming to a pluripotent state by three
                     mal stem cells. Stem Cells 26(9):2287–2299, 2008.     approaches. Nature 465(7299):704–712, 2010.
                    38.  Le Blanc K, Rasmusson I, Sundberg B, et al: Treatment of severe acute graft-     68.  Wernig M, Meissner A, Foreman R, et al: In vitro reprogramming of fibroblasts into a
                     versus-host disease with third party haploidentical mesenchymal stem cells.  Lancet   pluripotent ES-cell-like state. Nature 448(7151):318–324, 2007.
                     363(9419):1439–1441, 2004.                           69.  Liu Z, Wen X, Wang H, et al: Molecular imaging of induced pluripotent stem cell immu-
                    39.  Rasmusson I, Ringden O, Sundberg B, Le Blanc K: Mesenchymal stem cells inhibit lym-  nogenicity with in vivo development in ischemic myocardium. PLoS One 8(6):e66369,
                     phocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell   2013.
                     Res 305(1):33–41, 2005.                              70.  Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR: Myocardial tissue engineering.
                    40.  Ringden O, Uzunel M, Rasmusson I, et al: Mesenchymal stem cells for treatment of   Br Med Bull 87:31–47, 2008.
                     therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397, 2006.    71.  Wendel JS, Ye L, Zhang P, Tranquillo RT, Zhang JJ: Functional consequences of a tissue-
                    41.  Holtan  SG,  Pasquini  M,  Weisdorf  DJ:  Acute  graft-versus-host  disease:  A  bench-to-   engineered myocardial patch for cardiac repair in a rat infarct model. Tissue Eng Part
                     bedside update. Blood 124(3):363–373, 2014.           A 20(7–8):1325–1335, 2014.
                    42.  Ball LM, Bernardo ME, Roelofs H, et al: Multiple infusions of mesenchymal stromal     72.  Korf-Klingebiel M, Kempf T, Sauer T, et al: Bone marrow cells are a rich source of
                     cells induce sustained remission in children with steroid-refractory, grade III-IV acute   growth  factors  and  cytokines:  Implications  for  cell  therapy trials  after  myocardial
                     graft-versus-host disease. Br J Haematol 163(4):501–509, 2013.  infarction. Eur Heart J 29(23):2851–2858, 2008.
                    43.  Bernardo ME, Fibbe WE: Mesenchymal stromal cells: Sensors and switchers of inflam-    73.  Thum T, Bauersachs J, Poole-Wilson PA, et al: The dying stem cell hypothesis: Immune
                     mation. Cell Stem Cell 13(4):392–402, 2013.           modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. J Am
                    44.  Dalal J, Gandy K, Domen J: Role of mesenchymal stem cell therapy in Crohn’s disease.   Coll Cardiol 46(10):1799–1802, 2005.
                     Pediatr Res 71(4 Pt 2):445–451, 2012.                74.  Pavo N, Zimmermann M, Pils D, et al: Long-acting beneficial effect of percutaneously
                    45.  Keerthi N, Chimutengwende-Gordon M, Sanghani A, Khan W: The potential of   intramyocardially delivered secretome of apoptotic peripheral blood cells on porcine
                     stem cell therapy for osteoarthritis and rheumatoid arthritis. Curr Stem Cell Res Ther   chronic ischemic left ventricular dysfunction. Biomaterials 35(11):3541–3550, 2014.
                     8(6):444–450, 2013.                                  75.  Weiss DJ, Bertoncello I, Borok Z, et al: Stem cells and cell therapies in lung biology and
                    46.  Chhabra P, Brayman KL: Stem cell therapy to cure type 1 diabetes: From hype to hope.   lung diseases. Proc Am Thorac Soc 8(3):223–272, 2011.
                     Stem Cells Transl Med 2(5):328–336, 2013.            76.  Rock JR, Hogan BL: Epithelial progenitor cells in lung development, maintenance,
                    47.  Prockop DJ: Repair of tissues by adult stem/progenitor cells (MSCs): Controversies,   repair, and disease. Annu Rev Cell Dev Biol 27:493–512, 2011.
                     myths, and changing paradigms. Mol Ther 17(6):939–946, 2009.    77.  McQualter JL, Bertoncello I: Concise review: Deconstructing the lung to reveal its
                    48.  Tolar J, Wang X, Braunlin E, et al: The host immune response is essential for the bene-  regenerative potential. Stem Cells 30(5):811–816, 2012.
                     ficial effect of adult stem cells after myocardial ischemia. Exp Hematol 35(4):682–690,     78.  Perl AK, Wert SE, Loudy DE, et al: Conditional recombination reveals distinct sub-
                     2007.                                                 sets of epithelial cells in trachea, bronchi, and alveoli. Am J Respir Cell Mol Biol 33(5):
                    49.  Laslett LJ, Alagona P Jr, Clark BA 3rd, et al: The worldwide environment of cardio-  455–462, 2005.
                     vascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the     79.  Giangreco A, Arwert EN, Rosewell IR, et al: Stem cells are dispensable for lung homeo-
                     American College of Cardiology. J Am Coll Cardiol 60(25 Suppl):S1–S49, 2012.  stasis but restore airways after injury. Proc Natl Acad Sci U S A 106(23):9286–9291,
                    50.  Rosenstrauch D, Poglajen G, Zidar N, Gregoric ID: Stem cell therapy for ischemic heart   2009.
                     failure. Tex Heart Inst J 32(3):339–347, 2005.       80.  Hong KU, Reynolds SD, Giangreco A, et al: Clara cell secretory protein-expressing cells
                    51.  Bergmann O, Bhardwaj RD, Bernard S, et al: Evidence for cardiomyocyte renewal in   of the airway neuroepithelial body microenvironment include a label-retaining subset
                     humans. Science 324(5923):98–102, 2009.               and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell
                    52.  Chiu RC, Zibaitis A, Kao RL: Cellular cardiomyoplasty: Myocardial regeneration with   Mol Biol 24(6):671–681, 2001.
                     satellite cell implantation. Ann Thorac Surg 60(1):12–18, 1995.    81.  Giangreco A, Reynolds SD, Stripp BR: Terminal bronchioles harbor a unique airway
                    53.  Pouzet B, Vilquin JT, Hagege AA, et al: Intramyocardial transplantation of autolo-  stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol
                     gous myoblasts: Can tissue processing be optimized?  Circulation 102(19 Suppl 3):   161(1):173–182, 2002.
                     III210–III215, 2000.                                 82.  Teisanu RM, Chen H, Matsumoto K, et al: Functional analysis of two distinct bronchio-
                    54.  Menasche P: Stem cell therapy for heart failure: Are arrhythmias a real safety concern?   lar progenitors during lung injury and repair. Am J Respir Cell Mol Biol 44(6):794–803,
                     Circulation 119(20):2735–2740, 2009.                  2011.
                    55.  Orlic D, Kajstura J, Chimenti S, et al: Bone marrow cells regenerate infarcted myocar-    83.  Chapman HA, Li X, Alexander JP, et al: Integrin alpha6beta4 identifies an adult
                     dium. Nature 410(6829):701–705, 2001.                 distal  lung  epithelial  population  with  regenerative  potential  in  mice.  J  Clin  Invest
                    56.  Orlic D, Hill JM, Arai AE: Stem cells for myocardial regeneration. Circ Res 91(12):   121(7):2855–2862, 2011.
                     1092–1102, 2002.                                     84.  Dobbs LG, Johnson MD, Vanderbilt J, et al: The great big alveolar TI cell: Evolving
                    57.  Kocher AA, Schuster MD, Szabolcs MJ, et al: Neovascularization of ischemic myocar-  concepts and paradigms. Cell Physiol Biochem 25(1):55–62, 2010.
                     dium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis,     85.  Buckley S, Shi W, Carraro G, et al: The milieu of damaged alveolar epithelial type 2
                     reduces remodeling and improves cardiac function. Nat Med 7(4):430–436, 2001.  cells stimulates alveolar wound repair by endogenous and exogenous progenitors. Am J
                   58.  Luth ES, Jun SJ, Wessen MK, et al: Bone marrow side population cells are enriched   Respir Cell Mol Biol 45(6):1212–1221, 2011.
                     for progenitors capable of myogenic differentiation. J Cell Sci 121(Pt 9):1426–1434,     86.  Kim CF, Jackson EL, Woolfenden AE, et al: Identification of bronchioalveolar stem cells
                     2008.                                                 in normal lung and lung cancer. Cell 121(6):823–835, 2005.








          Kaushansky_chapter 30_p0447-0458.indd   455                                                                   9/17/15   6:07 PM
   475   476   477   478   479   480   481   482   483   484   485