Page 481 - Williams Hematology ( PDFDrive )
P. 481
456 Part V: Therapeutic Principles Chapter 30: Regenerative Medicine: Multipotential Cell Therapy for Tissue Repair 457
87. Kumar PA, Hu Y, Yamamoto Y, et al: Distal airway stem cells yield alveoli in vitro and 118. Janowski M, Walczak P, Date I: Intravenous route of cell delivery for treatment of neu-
during lung regeneration following H1N1 influenza infection. Cell 147(3):525–538, rological disorders: A meta-analysis of preclinical results. Stem Cells Dev 19(1):5–16,
2011. 2010.
88. Zhao YD, Courtman DW, Deng Y, et al: Rescue of monocrotaline-induced pulmo- 119. Luo Y: Cell-based therapy for stroke. J Neural Transm 118(1):61–74, 2011.
nary arterial hypertension using bone marrow-derived endothelial-like progenitor 120. Keirstead HS, Nistor G, Bernal G, et al: Human embryonic stem cell-derived oligoden-
cells: Efficacy of combined cell and eNOS gene therapy in established disease. Circ Res drocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord
96(4):442–450, 2005. injury. J Neurosci 25(19):4694–4705, 2005.
89. Lam CF, Roan JN, Lee CH, et al: Transplantation of endothelial progenitor cells 121. Erceg S, Ronaghi M, Stojkovic M: Human embryonic stem cell differentiation toward
improves pulmonary endothelial function and gas exchange in rabbits with endotox- regional specific neural precursors. Stem Cells 27(1):78–87, 2009.
in-induced acute lung injury. Anesth Analg 112(3):620–627, 2011. 122. Nistor GI, Totoiu MO, Haque N, et al: Human embryonic stem cells differentiate into
90. Balasubramaniam V, Ryan SL, Seedorf GJ, et al: Bone marrow-derived angiogenic cells oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia
restore lung alveolar and vascular structure after neonatal hyperoxia in infant mice. Am 49(3):385–396, 2005.
J Physiol Lung Cell Mol Physiol 298(3):L315–323, 2010. 123. Sharp J, Frame J, Siegenthaler M, et al: Human embryonic stem cell-derived oligoden-
91. Stewart DJ, Mei SH: Cell-based therapies for lung vascular diseases: Lessons for the drocyte progenitor cell transplants improve recovery after cervical spinal cord injury.
future. Proc Am Thorac Soc 8(6):535–540, 2011. Stem Cells 28(1):152–163, 2010.
92. Wang XX, Zhang FR, Shang YP, et al: Transplantation of autologous endothelial pro- 124. Lu QR, Sun T, Zhu Z, et al: Common developmental requirement for Olig function
genitor cells may be beneficial in patients with idiopathic pulmonary arterial hyperten- indicates a motor neuron/oligodendrocyte connection. Cell 109(1):75–86, 2002.
sion: A pilot randomized controlled trial. J Am Coll Cardiol 49(14):1566–1571, 2007. 125. Zhou Q, Anderson DJ: The bHLH transcription factors OLIG2 and OLIG1 couple neu-
93. Zhu JH, Wang XX, Zhang FR, et al: Safety and efficacy of autologous endothelial pro- ronal and glial subtype specification. Cell 109(1):61–73, 2002.
genitor cells transplantation in children with idiopathic pulmonary arterial hyperten- 126. Brustle O, Maskos U, McKay RD: Host-guided migration allows targeted introduction
sion: Open-label pilot study. Pediatr Transplant 12(6):650–655, 2008. of neurons into the embryonic brain. Neuron 15(6):1275–1285, 1995.
94. Keating A: Mesenchymal stromal cells: New directions. Cell Stem Cell 10(6):709–716, 127. Pluchino S, Zanotti L, Rossi B, et al: Neurosphere-derived multipotent precursors
2012. promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):
95. Prockop DJ, Oh JY: Medical therapies with adult stem/progenitor cells (MSCs): A back- 266–271, 2005.
ward journey from dramatic results in vivo to the cellular and molecular explanations. 128. Bretzner F, Gilbert F, Baylis F, Brownstone RM: Target populations for first-in-human
J Cell Biochem 113(5):1460–1469, 2012. embryonic stem cell research in spinal cord injury. Cell Stem Cell 8(5):468–475, 2011.
96. Islam MN, Das SR, Emin MT, et al: Mitochondrial transfer from bone-marrow- 129. Roskams TA, Theise ND, Balabaud C, et al: Nomenclature of the finer branches of
derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med the biliary tree: Canals, ductules, and ductular reactions in human livers. Hepatology
18(5):759–765, 2012. 39(6):1739–1745, 2004.
97. Tropea KA, Leder E, Aslam M, et al: Bronchioalveolar stem cells increase after mes- 130. Furuyama K, Kawaguchi Y, Akiyama H, et al: Continuous cell supply from a Sox9-
enchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet
Am J Physiol Lung Cell Mol Physiol 302(9):L829–L837, 2012. 43(1):34–41, 2011.
98. Matthay MA, Thompson BT, Read EJ, et al: Therapeutic potential of mesenchymal stem 131. Duncan AW, Dorrell C, Grompe M: Stem cells and liver regeneration. Gastroenterology
cells for severe acute lung injury. Chest 138(4):965–972, 2010. 137(2):466–481, 2009.
99. Epperly MW, Guo H, Gretton JE, Greenberger JS: Bone marrow origin of myofibrob- 132. Schmelzer E, Zhang L, Bruce A, et al: Human hepatic stem cells from fetal and postnatal
lasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 29(2):213–224, 2003. donors. J Exp Med 204(8):1973–1987, 2007.
100. Yan X, Liu Y, Han Q, et al: Injured microenvironment directly guides the differentiation 133. De Vos R, Desmet V: Ultrastructural characteristics of novel epithelial cell types iden-
of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35(9):1466–1475, tified in human pathologic liver specimens with chronic ductular reaction. Am J Pathol
2007. 140(6):1441–1450, 1992.
101. Weiss DJ, Casaburi R, Flannery R, et al: A placebo-controlled, randomized trial of mes- 134. Wilson JW, Leduc EH: Role of cholangioles in restoration of the liver of the mouse after
enchymal stem cells in COPD: Chest 143(6):1590–1598, 2013. dietary injury. J Pathol Bacteriol 76(2):441–449, 1958.
102. Song M, Kim YJ, Kim YH, et al: Effects of duplicate administration of human neural 135. Ito M, Nagata H, Miyakawa S, Fox IJ: Review of hepatocyte transplantation. J Hepato-
stem cell after focal cerebral ischemia in the rat. Int J Neurosci 121(8):457–461, 2011. biliary Pancreat Surg 16(2):97–100, 2009.
103. Uchida N, Buck DW, He D, et al: Direct isolation of human central nervous system stem 136. Basma H, Soto-Gutierrez A, Yannam GR, et al: Differentiation and transplantation of
cells. Proc Natl Acad Sci U S A 97(26):14720–14725, 2000. human embryonic stem cell-derived hepatocytes. Gastroenterology 136(3):990–999,
104. Goldman SA: Progenitor cell-based treatment of the pediatric myelin disorders. Arch 2009.
Neurol Psychiatry 68(7):848–856, 2011. 137. Asgari S, Moslem M, Bagheri-Lankarani K, et al: Differentiation and transplantation
105. Sandrock RW, Wheatley W, Levinthal C, et al: Isolation, characterization and preclinical of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev
development of human glial-restricted progenitor cells for treatment of neurological 9(4):493–504, 2013.
disorders. Regen Men 5(3):381–394, 2010. 138. Takebe T, Sekine K, Enomura M, et al: Vascularized and functional human liver from
106. Boulis NM, Federici T, Glass JD, et al: Translational stem cell therapy for amyotrophic an iPSC-derived organ bud transplant. Nature 499(7459):481–484, 2013.
lateral sclerosis. Nat Rev Neurol 8(3):172–176, 2011. 139. Espejel S, Roll GR, McLaughlin KJ, et al: Induced pluripotent stem cell-derived hepato-
107. Glass JD, Boulis NM, Johe K, et al: Lumbar intraspinal injection of neural stem cells in cytes have the functional and proliferative capabilities needed for liver regeneration in
patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem mice. J Clin Invest 120(9):3120–3126, 2010.
Cells 30(6):1144–1151, 2012. 140. Gaudio E, Carpino G, Cardinale V, et al: New insights into liver stem cells. Dig Liver Dis
108. Minguell JJ, Allers C, Lasala GP: Mesenchymal stem cells and the treatment of condi- 41(7):455–462, 2009.
tions and diseases: The less glittering side of a conspicuous stem cell for basic research. 141. Zhang L, Theise N, Chua M, Reid LM: The stem cell niche of human livers: Symmetry
Stem Cells Dev 22(2):193–203, 2013. between development and regeneration. Hepatology 48(5):1598–1607, 2008.
109. Singh SP, Tripathy NK, Nityanand S: Comparison of phenotypic markers and neural 142. Semeraro R, Carpino G, Cardinale V, et al: Multipotent stem/progenitor cells in the
differentiation potential of multipotent adult progenitor cells and mesenchymal stem human foetal biliary tree. J Hepatol 57(5):987–994, 2012.
cells. World J Stem Cells 5(2):53–60, 2013. 143. Carpentier R, Suner RE, van Hul N, et al: Embryonic ductal plate cells give rise to
110. Lunn JS, Sakowski SA, Federici T, et al: Stem cell technology for the study and treatment cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterol-
of motor neuron diseases. Regen Men 6(2):201–213, 2011. ogy 141(4):1432–1438, 1438.e1431–1434, 2011.
111. Kondziolka D, Steinberg GK, Wechsler L, et al: Neurotransplantation for patients with 144. Kawaguchi Y: Sox9 and programming of liver and pancreatic progenitors. J Clin Invest
subcortical motor stroke: A phase 2 randomized trial. J Neurosurg 103(1):38–45, 2005. 123(5):1881–1886, 2013.
112. Bang OY, Lee JS, Lee PH, Lee G: Autologous mesenchymal stem cell transplantation in 145. Cardinale V, Wang Y, Carpino G, et al: Multipotent stem/progenitor cells in human
stroke patients. Ann Neurol 57(6):874–882, 2005. biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. J Hepatol
113. Cashman N, Tan LY, Krieger C, et al: Pilot study of granulocyte colony stimulating 54(6):2159–2172, 2011.
factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis 146. Banga A, Greder LV, Dutton JR, Slack JM: Stable insulin-secreting ducts formed by
(ALS). Muscle Nerve 37(5):620–625, 2008. reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist.
114. Chio A, Mora G, La Bella V, et al: Repeated courses of granulocyte colony-stimulating Gene Ther 21(1):19–27, 2014.
factor in amyotrophic lateral sclerosis: Clinical and biological results from a prospective 147. Huch M, Dorrell C, Boj SF, et al: In vitro expansion of single Lgr5+ liver stem cells
multicenter study. Muscle Nerve 43(2):189–195, 2011. induced by Wnt-driven regeneration. Nature 494(7436):247–250, 2013.
115. Deda H, Inci MC, Kurekci AE, et al: Treatment of amyotrophic lateral sclerosis patients 148. Huch M, Bonfanti P, Boj SF, et al: Unlimited in vitro expansion of adult bi-potent pan-
by autologous bone marrow-derived hematopoietic stem cell transplantation: A 1-year creas progenitors through the Lgr5/R-spondin axis. EMBO J 32(20):2708–2721, 2013.
follow-up. Cytotherapy 11(1):18–25, 2009. 149. American Diabetes Association: Statistics About Diabetes: Overall Numbers, Diabetes
116. Lees JS, Sena ES, Egan KJ, et al: Stem cell-based therapy for experimental stroke: A and Prediabetes. Available online at http://www.diabetes.org/diabetes-basics/statis-
systematic review and meta-analysis. Int J Stroke 7(7):582–588, 2012. tics/?loc=db-slabnav (accessed 8 August 2014).
117. Zhang ZG, Chopp M: Neurorestorative therapies for stroke: Underlying mechanisms 150. Zhang D, Jiang W, Liu M, et al: Highly efficient differentiation of human ES cells and iPS
and translation to the clinic. Lancet Neurol 8(5):491–500, 2009. cells into mature pancreatic insulin-producing cells. Cell Res 19(4):429–438, 2009.
Kaushansky_chapter 30_p0447-0458.indd 456 9/17/15 6:08 PM

