Page 38 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 38

Mathematics Term 1  STPM  Chapter 2 Sequences and Series
                                          n
               The expansion of (1 + x) , n  Z     +
                                              n
               From the binomial theorem for (a + b) , when n is a positive integer with a = 1 and b = x, we have a finite series
                            n
                                   n
                                                             n
                                               n
                                                                       n
                                       2
                     n
                                                   r
               (1 + x)  = 1 +  1 2  x +  1 2  x  +  …  +  1 2  x  +  …  +  1 n –1 2 x n – 1  + x
                                   2
                            1
                                               r
                                                                                      n
                                                                      r
                      = 1 + nx +   n(n – 1)  x +  …  +   n(n – 1) … (n – r + 1)   x  +  …  + nx  n – 1  + x .
                                         2
                                   2!                     r!
                                               n
                                                                                           n
               In general, if we want to expand (a + b) , it would be easier if we change it to the form (1 + x)  as shown below:
                                      3 1
                                   n
                             (a + b)  =  a 1 +   b 24 n
                                            a
                                        1
                                    = a 1 +   b 2 n
                                       n
                                            a
                                       n
                                              n
                                    = a (1 + x) , where x =   b   .                                         2
                                                         a
                   Example 34
                 Use the binomial theorem to expand (1 + x) .
                                                     7
                                                         7
                                                  7
                                                                               7
                                                                                      7
                                                                7
                                                                        7
                                                                   3
                                                                                         6
                                                                           4
                                                            2
                                                                                  5
                                          7
                Solution:           (1 + x)   = 1 +  1 2 x +  1 2 x  +  1 2  x  +  1 2 x  +  1 2 x  +  1 2 x  + x 7
                                                                               5
                                                  1
                                                         2
                                                                        4
                                                                                      6
                                                                3
                                                                              4
                                                                      3
                                                                                               6
                                            = 1 +   7!  x +   7!  x  +   7!  x  +   7!  x  +   7!  x  +   7!  x  + x 7
                                                              2
                                                                                       5
                                                 6! 1!   5! 2!   4! 3!   3! 4!    2! 5!   1! 6!
                                                                                          6
                                                                   3
                                                          2
                                            = 1 + 7x +   7 · 6 x  +   7 · 6 · 5 x  +   7 · 6 · 5 x  +   7 · 6 x  + 7x  + x 7
                                                                             4
                                                                                     5
                                                      1 · 2  1 · 2 · 3  1 · 2 · 3  1 · 2
                                                              3
                                            = 1 + 7x + 21x  + 35x  + 35x  + 21x  + 7x + x 7
                                                                               6
                                                                    4
                                                        2
                                                                          5
                   Example 35
                                                                   4
                 Using the binomial theorem, find the expansion of (3x + 4y) .
                                                                   4
                                                                                 4
                                                       4
                Solution:           (3x + 4y)  = (3x) +  1 2 (3x) (4y) +  1 2 (3x) (4y)  +  1 2 (3x)(4y)  + (4y) 4
                                                            3
                                                   4
                                                                                         3
                                            4
                                                                         2
                                                                             2
                                                                   2
                                                                                 3
                                                       1
                                                                                     4 4
                                                4 4
                                                                                 3
                                                           3
                                                          3
                                             = 3 x  + 4·3 ·4x y + 6·3 ·4 x y  + 4·3·4 xy  + 4 y
                                                                    2    2 2 2
                                                                                   3
                                                                          3
                                                  4
                                                         3
                                             = 81x  + 432x y + 864x y  + 768xy  + 256y 4
                                                                 2 2
                   Example 36
                                    4
                                                             15
                 Find the coefficient of x  in the expansion of (2x – 1) .
                Solution:           From the binomial theorem,
                                                            n  n
                                                       n
                                                                    b
                                                  (a + b)   =  ∑  1 2 a n – r  r
                                                           r = 0 r
                                                            n
                                                   th
                                                                  b
                                    where the (r + 1)  term =  1 2 a n – r  r
                                                            r
                                                    15  15
                                                15
                                    Thus (2x – 1)   =  ∑  1 2 (2x) 15 – r  (–1) r
                                                    r = 0 r
                                                4
                                    The term in x  is when 15 – r = 4, i.e. r = 11.
                                                     15
                                    Coefficient of x   =  1 2 2 (–1) 11
                                                         4
                                                 4
                                                     11
                                                  = –   15 × 14 × 13 × 12  × 2 4
                                                        1 × 2 × 3 × 4
                                                  = –21 840

                                                                                                      125
       02 STPM Math T T1.indd   125                                                                    3/28/18   4:21 PM
   33   34   35   36   37   38   39   40   41   42   43