Page 57 - TOP ONE MATHS F3
P. 57

Top One (MATHS F3) Penerbitan Pelangi Sdn Bhd




 CHAPTER  Straight Lines    Mathematics  Form 3  Chapter 9 Straight Lines    9.  (a) LHS: 3(2) = 6

              y
                     x
 9
          (b)    = –    + 1

              5
                    10
                                                              RHS: 2(0) + 6 = 6

                                                              Conclusion: Yes
                    5x
 Garis Lurus
               y = –    + 5
                    10
                    1                                      (b)  LHS: 4(–2) = –8
               y = –   x + 5
                    2                                           RHS: 3(–1) + 1 = –2
                                                                Conclusion: No
   1.  (a)  m = undefined  –7  –7  y  x
 (c)  Gradient m =    =   (c)  –    = –    + 1
 (b)  m < 0  –7  11 – 5  6  4  3                           (c)  LHS: 0
 (c)  m = 0     y =   6  x + c,   y =   4x   – 4                RHS: 5(–3) – 1 = –16
                     3
    substitute (5, 0)                                           Conclusion: No
                y
   2.  (a) y = –5x + 2  0 =   –7 (5) + c  (d)  –    =   4x  + 1
                     9
 6
 (b)  y = 5  35  9 y = –4x – 9                          10.  (a)  L 1 :  3y = –6x + 7
                                                                               7
 (c)  y = 3  c =   6                                                 y = –2x +  ,   gradient m 1  = –2
 1                                                                             3
 7
 (d)  y =  x  y  = –   x +  35
                           1
 2  6  6    7.  (a)    y =  x – 9                               L 2 : –4y = 8x – 5
 3  2                      6                                                   5
 (e)  y =  x +                                                       y = –2x +  , gradient m 2  = –2
 4  5                 6y = x – 54                                              4
   5.  (a)  3y = –5x + 2
 –5  2          x – 6y – 54 = 0                                 m 1  = m 2 , therefore L 1  is parallel to L 2 .
   3.  (a)  m = –5, c = –6       y =   3  x +   3
 1
 (b)  m =  , c = 7  x  y                                                      1
 2  (b)  6y = 2x +3  (b)    2   +   = 1                    (b)  L 1 :  2y + 1 = –  x + 6
                      8
 (c)  m = 0, c = 8  2  3  x  y                                                2
                           
 y =   x +   	  	   +   = 1  × 8                                            1    5               1
 6  6            2    8                                                 y = –   x +  , gradient m 1  = –
                                                                                                  4
                                                                             4
                                                                                  2
 3 – 5  1  1  1  4x + y = 8
   4.  (a)  Gradient m =   –4 – 0   =   2  y =   x +   2        L 2 :  3y = 8x – 3
 3
 1            4x + y – 8 = 0
    y =  x + c,                                                         8                     8
 2                                                                  y =  x – 1, gradient  m 2  =
 (c)  4y = –x – 1                                                       3                     3
    substitute (0, 5)  x  1
          y = –    –     8.  (a)    5y = 2x + 10
 5 = 0 + c  4  4                                                m 1  ≠ m 2 , therefore L 1  is not parallel to
                –2x + 5y = 10
 c  = 5         2x   5y   10                                    L 2 .
 1  (d)  –8y = –4x +12         –      +    =
 y =  x + 5     10   10   10
 2  –4  12        x
                      y
           y =   x –            –    +   = 1               (c)  L 1 : 3y + 2x = –6
 –8  8            5   2
                                                                              2
                                                                                                  2
 –2 – 1  1  3                                                           y = –  x – 2, gradient m 1  = –
 (b)  Gradient m =                y =  x –
 10 – 9  2  2  (b)  6y – 2x – 8 = 0                                           3                   3
 –3             (–2x + 6y = 8) ÷ 8                              L 2 :  6 – 5y = 8x – 1
 =
 1  y  x         –x   3y                                                     8    7               8
 = –3    6.  (a)    = –    + 1  4   +   4   = 1                         y = –  x +  , gradient m 2  = –   5
 8
 4
                                                                             5
                                                                                  5
 8
    y = –3x + c,            y = –   x + 8  1
    substitute (9, 1)  4  (c)      y =  x – 6                   m 1  ≠ m 2 , therefore L 1  is not parallel to
                        2
          y = –2x + 8
                         
 1 = –3(9) + c  	  		 1  x – y = 6  ÷ 6                        L 2 .
 c  = 28       2
              1
                   y
 y = –3x + 28        x –   = 1
             12    6
 47  © Penerbitan Pelangi Sdn. Bhd.  © Penerbitan Pelangi Sdn. Bhd.  48
 A25
 BOOKLET ANS MATH F3.indd   25                                                            03/01/2020   10:21 AM
   52   53   54   55   56   57   58   59   60   61   62