Page 33 - ACE YR IGCSE A TOP APPR' TO ADD MATH
P. 33

3
                                                1
                         Gradient of straight line  = –   ÷  3            Let x  = y
                                                                              2
                                                2   5                     5y  + 32y – 21 = 0
                                                                            2
                                                5
                                                                               3
                                             = –   6                        y  =    or  y = –7
                         e = –  5                                           3  5      3
                                                                               3
                             6                                              x   =    or  x  = –7 (rejected)
                                                                                      2
                                                                            2
                         f = –  1                                              5
                             2                                 [4]          x  = 0.711                          [7]
                       15.  (a)  x . 1                                  20.  Let √x  = y
                                                               [1]            20
                         (b)  (x – 1)(x + 3)  . –6                        6y –   y   = 7
                                       2
                          2 Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                            –4.1 , x , –1.4,  x . 0.5                     6y  – 7y – 20 = 0
                                                                            2
                                                               [3]        (3y + 4)(2y – 5) = 0
                       16.  (a)  –1.6 < x < 0.6,  x > 3                     y  = –  4       or   y =  5
                                                               [2]              3                    2
                                                                                4
                         (b)  –1.5 till –1.6 , x , 1                      √x  = –   (rejected)  or   √x =  5
                            x . 2.5 till 2.6                                    3                    2
                                                               [4]                                 = 6.25
                                                                                                                [5]
                       17.  (a)  a = –1
                            b = 2
                            c = –1                                      4    Indices and Surds
                            d = 1
                                                               [2]      1.  3    3 + 3  ÷ 3 – 3  = k(3 )
                                                                           n
                                                                                 n
                                                                                             n
                                                                                        n
                         (b)  –1.1 < x < –0.9 till –0.8                     ˙
                                                                                   1
                                                                                       2
                                                                               1
                            0 < x < 0.8 till 0.9                               3 3 +   – 1  = k(3 )
                                                                              n
                                                                                            n
                                                               [2]                 3
                                                                                1
                                                                          k = 3 +   – 1
                       18.  Let x  = y                                       7  3
                             2
                         –2y  + 9y  – y – 12 = 0                            =  3
                                2
                            3
                         Let y = –1                                                                             [2]
                         –2(–1)  + 9(–1)  – (–1) – 12 = 0               2.  4    4 – 4  = 24
                                     2
                              3
                                                                                 x
                                                                           x
                                                                            ˙
                                                                            x
                                       2
                                   –2y  + 11y – 12                          4 (4 – 1) = 24
                                                                                 x
                                       2
                                   3
                           y + 1  –2y  + 9y  – y – 12                           4  = 8
                                                                                2x
                                                                                    3
                                –2y  – 2y                                      2  = 2
                                   3
                                       2
                                    11y  – y                                    x = 1.5
                                       2
                                    11y  + 11y                                                                  [2]
                                       2
                                      – 12y – 12                        3.  3(27    3 ) + 4(4    2) = 4
                                                                             x
                                                                                              x
                                                                                –2
                                                                                       x
                                                                                        ˙
                                                                              ˙
                                                                                              x
                                                                                                  x
                                                                                          –1
                                                                                      x
                                         – 12y – 12                                 27    3  = 4  + (4    8)
                                                                                       ˙
                                                                                                   ˙
                                                                                      x
                                                                                          –1
                                                                                              x
                                                                                       ˙
                         (y + 1)(–2y  + 11y – 12) = 0                               27    3  = 4 (1 + 8)
                                  2
                         (y + 1)(2y – 3)(4 – y) = 0                                     4 x   =  3 –1
                                              3                                         27 x  9
                          y = –1        or  y =     or  y = 4
                                                                                        4
                                              2                                       1 2 x  =   1
                         x  = –1 (rejected)  or  x = ±  3  or  x = ±2                  27    27
                          2
                                                2              [7]                        p = 1, q = 27
                                                                                                                [3]
                          1        3
                                                                                                   2
                                                                                       2
                       19.  x (5x  + 32x  – 21)  = 0                    4.     (√5x + 1)   = (5 – √x – 2)
                                   2
                             3
                                       1                                          5x + 1  = 25 – 10√x – 2 + x – 2
                                       2
                                      x   = 0                                  (4x – 22)   = (–10√x – 2)
                                                                                                   2
                                                                                       2
                                       x  = 0                             16x  – 276x + 684 = 0
                                                                             2
                                3                                         x = 14.25 (rejected) or x = 3
                                2
                         5x  + 32x  – 21 = 0
                           3
                                                                                                                [4]
                                                                                                     Answers    173
         Answers Add Math.indd   173                                                                             14/03/2022   12:29 PM
   28   29   30   31   32   33   34   35   36   37   38