Page 38 - ACE YR IGCSE A TOP APPR' TO ADD MATH
P. 38

(b)  Solve the simultaneous equations to get:     23.  (2x − 1)(bx  + cx + d)
                                                                                2
                         a = −1, b = −15                               = 2bx  + (2c − b)x  + (2d − c)x − d
                                                                           3
                                                                                     2
                         f(x) = x  − x  − 17x − 15                     Form the equations:
                               3
                                   2
                         (x  − x  − 17x − 15)÷[(x + 3)(x + 1)]            2b = 4
                              2
                           3
                         = (x  – x  − 17x − 15) ÷ (x  + 4x + 3)         2c − b = −8
                             3
                                2
                                              2
                         = x – 5                                       2d − c = a
                                           2
                                        3
                                       x  – x  – 17x – 5
                                           2
                             x  + 4x + 3  x  – x  – 17x – 15              −d = 18
                              2
                                        3
                                        3
                                            2
                                       x  + 4x  + 3x                   Solve the simultaneous equations to get:
                                       x  – 5x  – 20x – 15             a = −33
                                            2
                                        4
                                       x  – 5x  – 20x – 15             b = 2
                                        4
                                            2
                        Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                         f(x) = (x + 3)(x + 1)(x – 5)                  c  = −3
                                                            [5]        d = −18
                      (c)              y                                                                     [5]
                                                                     24.            f(1) = 12
                                                                         1 + a + b − 4a + 12 = 12
                                                                                 −3a + b = −1
                                                                                              f(4)  = 60
                                                                                3
                                                                                      2
                                                                          4
                                                           x             (4)  + a(4)  + b(4)  − 4a(4) + 12  = 60
                           –3      –1              5
                                                                                            3a + b  = −13
                                   –15                                 Solve the simultaneous equations to get:
                                                                       a = −2, b = −7
                                                                                                             [5]
                                                            [3]
                          3
                      (d)  x  + x  − 4x − 4 = x  − x  − 17x − 15
                                        3
                                           2
                              2
                             2
                           2x  + 13x + 11 = 0                        6    Logarithmic and Exponential Functions
                                       ,
                         A(–1, 0);  B 1 –11 –945 2                   1.  y = 4
                                     2
                                          8
                                                                           b
                                                            [3]
                                                                       b = log  y
                                                                            4
                    20.  (−1)  + a(−1)  − 7(−1) + 6 = (−2)  + a(−2)  − 7(−2) + 6  x 2
                         3
                                2
                                                     2
                                               3
                      3a = 0                                           log   4y
                                                                         4
                        a = 0                                          = 2 log x − (log 4 + log  y)
                                                            [3]             4      4     4
                                                                       = 2a − (1 + b)
                    21.         f(k) = 2                               = 2a − 1− b
                        k  + k(k) − 5k = 2                                                                   [5]
                         3
                      k  + k  − 5k − 2 = 0                           2.  2 + 8(log  4) = log x
                       3
                          2
                      When k = 2,                                      Let u = log x  4
                                                                              x
                        (2)  + (2)  − 5(2) − 2 = 0                             4  1
                        3
                             2
                      (k  + k  − 5k − 2) ÷ (k − 2)                         2 + 8 1 2   = u
                        3
                           2
                                                                                u
                      = k  + 3k + 1                                       u  − 2u − 8  = 0
                        2
                                                                           2
                        k = 2 or k =   –3 + √5    or  k =   –3 – √5      (u − 4)(u + 2)  = 0
                                  2             2           [6]           u = 4 or u  = −2
                                                                                              1
                    22.  3x  − 11x  − 6x + 8 = 0                                 x  = 256 or x =  16
                             2
                        3
                                     3x  +   3x  + x – 2                                                     [5]
                                            2
                                       3
                                x – 4  3x  – 11x  – 6x + 8
                                            2
                                       3
                                     3x  – 12x                       3.  log x = log (2x + 3)
                                            2
                                       3
                                                                                9
                                                                         3
                                     3x  – 11x  – 6x                          log (2x + 3)
                                       3
                                            2
                                                                                 3
                                     3x  – 11x  – 4x                   log x =   log 3 2
                                       3
                                            2
                                                                         3
                                     3x  – 11x  – 2x + 8                           3
                                       3
                                            2
                                     3x  – 11x  – 2x + 8                                1
                                       3
                                            2
                                                                               x = (2x + 3) 2
                        (x − 4)(3x  + x − 2)  = 0                       x  − 2x − 3 = 0
                                2
                                                                        2
                       (x − 4)(3x − 2)(x + 1)  = 0                             x = 3 or x = −1 (rejected)
                                      x  = 4 or x = –1 or x =   2                                            [4]
                                                        3
                                                            [5]
                         Cambridge IGCSE
                                          TM
                  178     Ace Your Additional Mathematics
         Answers Add Math.indd   178                                                                             14/03/2022   12:29 PM
   33   34   35   36   37   38   39   40   41   42   43