Page 42 - Hybrid PBD 2022 Tg 5 - Matematik Tambahan
P. 42

Matematik Tambahan  Tingkatan 5  Bab 2 Pembezaan

                      (b)  y = 3 – x 2                                 (c)  y = x(x – 4)

                                    y + δy  = 3 – (x + δx) 2                           y  = x  – 4x
                                                                                           2
                                3 – x  + δy  = 3 – x  – 2xδx – (δx) 2             y + δy  = (x + δx)  – 4(x + δx)
                                                                                                 2
                                    2
                                                2
                                       δy  = [–2x + δx] δx                   x  – 4x + δy  = x  + 2xδx + (δx)  – 4x – 4 δx
                                                                                           2
                                                                              2
                                                                                                         2
                                       δy   = – 2x + δx                              δy  = (2x – 4 + δx)δx
                                       δx                                            δy   = 2x – 4 + δx
                            Maka/Hence  dy   = had/lim  δy                           δx
                                       dx     δx → 0  δx                             dy           δy
                                           = had/lim (–2x + δx)           Maka/Hence     = had/lim
                                              δx → 0                                 dx     δx → 0  δx
                                           = –2x                                          = had/lim (2x – 4 + δx)
                                                                                            δx → 0
                                                                                          = 2x – 4
                             Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                                                                              1



                                                 x
                                           x
                          x
                  had/lim    – 2   = had/lim  ( – 2)( + 2)
                     x → 4  (x – 4)   x → 4  (x – 4)(x + 2)
                                                                                                              x
                                            (x – 4)                        Gunakan penggantian secara langsung, had    – 2   =
                                 = had/lim                                 0                              x → 4  (x – 4)
                                                x
                                    x → 4  (x – 4)( + 2)                    tidak tertakrif.
                                  1                                        0
                                 =                                         Perlu gunakan konjugat bagi x – 2, iaitu x + 2.
                                  4                                                           – 2  0
                                                                                              x
                                                                           Use direct substitution, lim    =   is not defined.
                                                                                           x → 4 (x – 4)  0
                                                                           Need to use the conjugate of x – 2, which is x + 2.
                  Kriteria Kejayaan:  ............................................................................................ .
                Saya berjaya
                •  Mencari had fungsi dengan menggunakan gantian terus.
                •  Mencari had fungsi dengan menggunakan pemfaktoran dan merasionalkan pengangka atau penyebut.
                •  Menentukan sama ada wujudnya had bagi suatu fungsi yang diberi.
                •  Menggunakan prinsip pertama.



                        2.2  Pembezaan Peringkat Pertama                                                         Buku Teks
                 PBD
                 PBD            The First Derivative                                                             ms. 38 – 48
                 PBD
                     FOKUS TOPIK


                                                   Rumus terbitan pertama
                                                   First derivative formula
                                                   y = f(x) = ax , a dan n ialah pemalar, maka  Fungsi ungkapan algebra
                                                           n
                     Dari prinsip pertama          y = f(x) = ax , a and n are constants, hence  Function of algebraic expression
                                                          n
                     From the first principles              dy   =   df(x)   = anx n–1    y = f(x) = h(x) ± g(x),
                     dy  df(x)  had/lim f(x)                dx   dx                       maka/hence
                     dx   =   dx   =    δx → 0                                             dy  =   df(x)   =   d  (h(x) ± g(x))
                                                                                           dx   dx   dx
                                                           Pembezaan/Differentiation
                                                               dy , f'(x),   df(x)
                                                               dx      dx
                     Fungsi hasil bahagi                                                      Fungsi hasil darab
                     Function involving quotient                                              Function involving product
                        u                                                                     y = uv, u = h(x), v = g(x)
                     y =  , u = h(x), v = g(x).        Fungsi gubahan/Composite function      maka/hence
                        v
                     Maka/Hence                        y = g(u) dan/and u = h(x),             dy  d       dv  du
                                  du   dv              f'(x) = g'(u) × h'(x),                 dx  =  dx (uv) = u  dx   + v  dx
                     dy  d  u    v  dx   – u dx        iaitu/which is  dy   =  dy  ×  du

                     dx   =  dx  v   =   v 2                   dx  du  dx
                                                       (Petua rantai/Chain rule)



                                                                  21                               © Penerbitan Pelangi Sdn. Bhd.





         02 Hybrid PBD Mate Tamb Tg5.indd   21                                                                    09/11/2021   9:24 AM
   37   38   39   40   41   42   43   44   45   46   47