Page 35 - Hybrid PBD 2022 Form 4 Additional Mathematics
P. 35

Matematik Tambahan  Tingkatan 4  Bab 2 Fungsi Kuadratik

                      (a)  Punca-punca persamaan kuadratik 6x  + 2x – 1 = 0 ialah α dan β. Bentukkan persamaan kudartik dengan
                                                           2
                         punca-punca berikut.
                         The roots of quadratic equation 6x  + 2x – 1 = 0 are α and β. Form a quadratic equation with the following roots.
                                                  2
                                                                                             2
                                                                                                         2
                         (i)    1  dan / and  1       (ii)   2α + 1 dan / and 2β + 1    (iii)  2α  dan / and 2β
                             α          β
                      a = 6, b = 2, c = –1            Hasil tambah punca:              Hasil tambah punca:
                                                      Sum of roots:
                                                                                       Sum of roots:
                                    2
                              b
                      α + β = –    = –   = –  1       (2α + 1) + (2β + 1)              = 2α  + 2β 2
                                                                                           2
                              a     6    3            = 2(α + β) + 2                   = 2(α  + β )
                                                                                            2
                                                                                                2
                           c
                      αβ =   = –  1                         1                          = 2[(α + β)  – 2αβ]
                                                                                                 2
                                                          
                           a    6                     = 2 –   + 2                            1  2    1
                                                            3
                                                                                           
                                                                                                    
                      Hasil tambah punca:             =  4                             = 2 –  3   – 2 –  6
                      Sum of roots:                     3                                8
                             Penerbitan Pelangi Sdn Bhd. All Rights Reserved
                      1  +                            Hasil darab punca:               =  9           Tip Penting
                          1
                      α   β                           Product of roots:                           α  + β  = (α + β)  − 2αβ
                                                                                                   2
                                                                                                             2
                                                                                                      2
                      =   α + β                       (2α + 1)(2β + 1)
                         αβ                           = 4αβ + 2(α + β) + 1             Hasil darab punca:
                                                                                       Product of roots:
                                                                   1
                                                            1
                                                            
                        –  1                          = 4 –   + 2 –   + 1              = 2α (2β )
                                                                                               2
                                                                                           2
                      =   3                                 6      3                   = 4(αβ) 2
                        –  1                          = –  1                                1  2
                                                                                           
                          6                               3                            = 4 –
                      = 2                                    4   1                          6
                                                      ∴ x  –  x –   = 0                =  1
                                                          2
                      Hasil darab punca:                     3   3                       9
                                                           2
                      Product of roots:                    3x  – 4x – 1 = 0                   8   1
                                                                                           2
                      1  ×   =   1   = –6                                              ∴ x  –  x +   = 0
                          1
                                                                                              9
                                                                                                  9
                      α   β   αβ                                                            9x  – 8x + 1 = 0
                                                                                            2
                      ∴ x  – 2x – 6 = 0
                         2
                  6.  Tentukan julat nilai x yang memuaskan setiap ketaksamaan kuadratik berikut.   SP 2.1.3     TP4
                     Determine the range of values of x that satisfies each of the following quadratic inequalities.
                      (i)  (x – 2)(x + 4)  0                          (ii)  (2x – 1)(x + 5)  0
                         Menggunakan kaedah lakaran graf:                 Apabila / When (2x – 1)(x + 5) = 0,
                         Using sketching graph method:                                                1
                         Apabila / When (x − 2)(x + 4) = 0,                                        x =  , x = –5
                                                                                                      2
                                                x = 2, x = −4             Oleh kerana, (2x – 1)(x + 5)   0,  x berada di
                         Oleh kerana (x – 2)(x + 4)  0, x berada         bawah paksi-x.
                         di atas paksi-x.                                 Since (2x – 1)(x + 5)  0, x lies below the x-axis.
                         Since (x – 2)(x + 4)  0, x lies above the x-axis.                     y
                                              y                                                      x
                                                                                            –5  0  1
                                                                                               –  2
                                                                                               –5
                                       +           +    x
                                         –4   0  2
                                                                                                             1
                                             –8                           Maka, julat bagi nilai x ialah −5  x    .
                                                                                                             2
                                                                                                        1
                         Maka, julat bagi nilai x ialah x  −4 atau x  2.     Thus, the range of values of x is −5  x   .
                                                                                                        2
                         Thus, the range of values of x is x  −4 or x  2.
                                                                                  Tip Penting
                                                                              Kewujudan "sama dengan" pada simbol
                                    Menggunakan kaedah garis                  ketaksamaan bagi julat x ditentukan mengikut
                                    nombor dan jadual                         ketaksamaan kuadratik yang diberikan.
                                    Using methods of number line              The existence of "equal to" in the inequality symbol for
                                    and table
                                                                              the range of x is determined according to the quadratic
                                                                              inequalities given.

                                                                  17                               © Penerbitan Pelangi Sdn. Bhd.

         02 Hybrid PBD Mate Tambahan Tg4.indd   17                                                                29/09/2021   3:25 PM
   30   31   32   33   34   35   36   37   38   39   40