Page 38 - Ranger SPM 2022 - Additional Mathematics
P. 38

Additional Mathematics  SPM  Chapter 2 Differentiation
                                   πj 3
                      (b)  I = 150πj –   2                   Solution
                          dI         3πj 2                  (a)
                          dj   = 150π –   2
             Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                               dI                                  h cm
                         When       = 0,
                               dj                                        x x cm  6 cm
                                                                           cm
                                3πj 2
                          150π –   2   = 0                      t cm
                                3πj 2
                                  2   = 150π  2                           2 cm
                                   j  = 150π ×   3π             h   x
                                   2
                                     = 100                      6  =  2
                                   j = 10 cm                     h = 3x
                          d I                                  Thus, the height of the cylinder
                           2
                      (c)     = –3πj                           t = 6 – h
                          dj 2
                         When j = 10 cm,                         = 6 – 3x
                          d y                                  The volume of the cylinder
                           2
                              = –3π(10)  0
                          dx 2                                 V = πx t
                                                                     2
                         Hence, the volume of the container        = πx (6 – 3x)
                                                                     2
                         is maximum when j = 10 cm.              = 6πx  – 3πx 3
                                                                      2
                             π(10)
                         I =   2  [300 – (10) ]             (b)   dV  = 12πx – 9πx 2
                                           2
                                                                dx
                           = 1 000π cm 3                       For the volume to be maximum
                                                                       dV
                    HOTS   Example 1                                   dx   = 0
                   The diagram below shows  a cone with a       12πx – 9πx  = 0
                                                                         2
                   radius of 2 cm and a height of 6 cm on a       3πx(4 – 3x) = 0
                   horizontal table. A cylinder with a radius of         4 – 3x = 0
                   x cm lies inside the cone and touches the            x =  4
                   surface of the cone and its axis of symmetry             3
                                                                 2
                   coincides with the axis of symmetry of the      d V  = 12π – 18πx
                   cone. Given that the volume of the cylinder   dx 2   4
                   is V cm .                                   When x =  ,
                         3
                                                                        3
                                                               d V            4
                                                                 2
                                                                dx 2   = 12π – 18π  
                                                                              3
                                                                   = –12π  0
                             6 cm                                                                     Form 5
                                                                                          4
                                                               Hence, V is maximum when x =  .
                                                                                          3
                                     x cm                             4  2    4  3
                                                                      3
                                                                              3
                                 2 cm                          V = 6π     – 3π  
                   (a)  Show that V = 6πx – 3πx .                =  32 π cm 3
                                      2
                                           3
                   (b)  When the value of x changes, find the       9
                      maximum volume of the cylinder in
                      terms of π.
                                                      191




         02 Ranger Mate Tambahan Tg5.indd   191                                             25/02/2022   9:23 AM
   33   34   35   36   37   38   39   40   41   42   43