Page 75 - 3 MATH (Ganesh M. Chaure)
P. 75
empãXH$ CXmhaUo
D EH$m ~aUrV 34 Mm°H$boQ>o ¶mà‘mUo D EH$m nwñVH$mMr qH$‘V 85 én¶o, Va Aem
9 ~aÊ`m§Vrb EHy$U Mm°H$boQo> {H$Vr ? 5 nwñVH$m§Mr EHy$U qH$‘V {H$Vr ?
3
Mm°H$boQ>o (EH$m ~aUrV)
3 4 85 én¶o> (à˶oH$ nwñVH$mMr qH$‘V)
~aʶm 5 nwñVHo$
9
Mm°H$boQ>o
3 0 6 én¶o
EHy$U Mm°H$boQo> 306 EHy$U qH$‘V én¶o
D 1 ‘rQ>a H$mnS>mMr qH$‘V 95 é. Amho, D 1 brQ>a XþYmMr qH$‘V 40 én¶o, Va
Va 6 ‘rQ>a H$mnS>mMr qH$‘V {H$Vr ? 3 brQ>a XþYmMr qH$‘V {H$Vr ?
H$mnS>mMr qH$‘V én¶o XþYmMr qH$‘V én¶o
F Imbrb CXmhaUo gmoS>dm.
D EH$m am§JoV 25 ‘wbo, ¶mà‘mUo 7 am§Jm§Vrb ‘wbm§Mr g§»¶m {H$Vr ?
D 53 én¶m§Zm EH$, ¶mà‘mUo 6 Q>m°dobm§Mr qH$‘V {H$Vr ?
D EH$m noQ>rV 72 g’$aM§Xo, Aem 5 noQ>çm§Vrb g’$aM§Xo {H$Vr ?
D EH$m S>ã¶mV 40 bmSy> ‘mdVmV, Va Aem 9 S>ã¶m§Vrb bmSy> {H$Vr ?
F JwUmH$mamMr CXmhaUo V¶ma H$ê$Z gmoS>dm.
‘m{hVr : 8 én¶m§g 1 dhr, 45 dhçm. ‘m{hVr : EH$m noQ>rV 48 S>mqi~o, 7 noQ>çm.
CXmhaU : 8 én¶m§g EH$ dhr ¶mà‘mUo CXmhaU : EH$m noQ>rV 48 S>mqi~o, Va 7
45 dhçm§Mr EHy$U qH$‘V {H$Vr ? noQ>çm§Vrb S>mqi~o {H$Vr ?
45 dhçm
8 EH$m dhrMr qH$‘V
360 én¶o
45 dhçm§Mr EHy$U qH$‘V 360 én¶o. 7 noQ>çm§Vrb EHy$U S>mqi~o
D EH$m am§JoV 15 PmS>o, 9 am§Jm. D EH$m S>ã¶mV 20 bmSy>, 8 S>~o.
D 16 IoiUr, à˶oH$s qH$‘V 10 é. D EH$m nwñVH$mbm 36 én¶o, 7 nwñVHo$.
66

