Page 78 - 3 MATH (Ganesh M. Chaure)
P. 78

D {MÌmV dmQ>o XmIdm d gmaUr nyU© H$am.


                      $EHy$U     EH$m dmQ>çmV  EHy$U
                     H$mH$S>çm     H$mH$S>çm     dmQ>o

                       10             1

                       10             2


                       10             5

                       10             10



               D VmB© 12 _wbm§Mm Ioi KoV hmoË`m. Ë`m åhUmë`m, ""Mbm AmnU JQ> V¶ma H$aʶmMm Ioi
                   Ioiy¶m. ‘r ~moQ>m§Zr IyU H$arZ {VV³¶m OUm§Mm JQ> H$am`Mm''.



                 VmBªZr hmVmMr 4 ~moQ>o da Ho$br.
                 {H$Vr JQ> Pmbo ?

                 VmBª©Zr hmVmZo IyU Ho$br 3 Mr.

                 {H$Vr JQ> Pmbo ?

                 VmBª©Zr hmVmZo IyU Ho$br 2 Mr.

                 {H$Vr JQ> Pmbo ?

                 VmBª©Zr XmoÝhr hmVm§Zr {‘iyZ

                 IyU Ho$br 6 Mr. {H$Vr JQ> Pmbo ?

               D EH$m Imo³¶mV 6 bmSy> ‘mdVmV, Va 48 bmSy> ^aÊ`mgmR>r {H$Vr ImoH$s bmJVrb ? emoYm
                   nmhÿ.


                     EHy$U bmSy>   EH$m Imo³¶mVrb bmSy> ImoŠ`m§Mr g§»`m


                         48                  6                      >




               D EH$m Imo³¶mV 10 ’$aí¶m ~gVmV. Imobrbm EHy$U 60 ’$aí¶m ~gdm¶À¶m AmhoV. ’$aí¶m§Mr
                   {H$Vr ImoH$s AmUmdr bmJVrb ?


                    EHy$U ’$aí¶m EH$m Imo³¶mVrb ’$aí¶m ImoŠ`m§Mr g§»`m

                         60                  10                     >



                                                                                                        69
   73   74   75   76   77   78   79   80   81   82   83