Page 168 - Euclid's Elements of Geometry
P. 168

ST	EW      þ.






                                                                                            ELEMENTS BOOK 6



                                                                to AC. Thus, as AB is to AC, so AC (is) to CE.
                                       Α                                                   A





                                 Β                                                  B


                                            Γ                                                  C


                          ∆                                                   D
                                    ibþ


                                              Ε
                                                                                                  E
               Δύο ἄρα δοθεισῶν εὐθειῶν τῶν ΑΒ, ΑΓ τρίτη ἀνάλογον  Thus, a third (straight-line), CE, has been found
            αὐταῖς προσεύρηται ἡ ΓΕ· ὅπερ ἔδει ποιῆσαι.         (which is) proportional to the two given straight-lines,
                                                                AB and AC. (Which is) the very thing it was required to
                                                                do.

                                      .
                                                                                 Proposition 12
               Τριῶν δοθεισῶν εὐθειῶν τετάρτην ἀνάλογον προ-       To find a fourth (straight-line) proportional to three
            σευρεῖν.                                            given straight-lines.
                    Α                                                  A
                    Β                                                  B

                    Γ                         Ε                        C                           E


                                     Η                                                   G







                     ∆               Θ        Ζ                         D               H        F
               ῎Εστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α, Β, Γ· δεῖ δὴ  Let A, B, and C be the three given straight-lines. So
            τῶν Α, Β, Γ τετράτην ἀνάλογον προσευρεῖν.           it is required to find a fourth (straight-line) proportional
               ᾿Εκκείσθωσαν δύο εὐθεῖαι αἱ ΔΕ, ΔΖ γωνίαν περιέχους- to A, B, and C.
            αι [τυχοῦσαν] τὴν ὑπὸ ΕΔΖ· καὶ κείσθω τῇ μὲν Α ἴση ἡ ΔΗ,  Let the two straight-lines DE and DF be set out en-
            τῇ δὲ Β ἴση ἡ ΗΕ, καὶ ἔτι τῇ Γ ἴση ἡ ΔΘ· καὶ ἐπιζευχθείσης compassing the [random] angle EDF. And let DG be
            τῆς ΗΘ παράλληλος αὐτῇ ἤχθω διὰ τοῦ Ε ἡ ΕΖ.         made equal to A, and GE to B, and, further, DH to C
               ᾿Επεὶ οὖν τριγώνου τοῦ ΔΕΖ παρὰ μίαν τὴν ΕΖ ἦκται ἡ  [Prop. 1.3]. And GH being joined, let EF have been
            ΗΘ, ἔστιν ἄρα ὡς ἡ ΔΗ πρὸς τὴν ΗΕ, οὕτως ἡ ΔΘ πρὸς  drawn through (point) E parallel to it [Prop. 1.31].
            τὴν ΘΖ. ἴση δὲ ἡ μὲν ΔΗ τῇ Α, ἡ δὲ ΗΕ τῇ Β, ἡ δὲ ΔΘ τῇ  Therefore, since GH has been drawn parallel to one
            Γ· ἔστιν ἄρα ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν ΘΖ.  of the sides EF of triangle DEF, thus as DG is to GE,
               Τριῶν ἄρα δοθεισῶν εὐθειῶν τῶν Α, Β, Γ τετάρτη so DH (is) to HF [Prop. 6.2]. And DG (is) equal to A,
            ἀνάλογον προσεύρηται ἡ ΘΖ· ὅπερ ἔδει ποιῆσαι.       and GE to B, and DH to C. Thus, as A is to B, so C (is)


                                                             168
   163   164   165   166   167   168   169   170   171   172   173