Page 359 - Applied Statistics with R
P. 359
14.2. PREDICTOR TRANSFORMATION 359
15
40
10
30 5
mpg Residuals 0
20 -5
-10
10
50 100 150 200 5 10 15 20 25 30
hp Fitted
mpg_hp_log = lm(mpg ~ hp + I(hp ^ 2), data = autompg)
par(mfrow = c(1, 2))
plot(mpg ~ hp, data = autompg, col = "dodgerblue", pch = 20, cex = 1.5)
xplot = seq(min(autompg$hp), max(autompg$hp), by = 0.1)
lines(xplot, predict(mpg_hp_log, newdata = data.frame(hp = xplot)),
col = "darkorange", lwd = 2, lty = 1)
plot(fitted(mpg_hp_log), resid(mpg_hp_log), col = "dodgerblue",
pch = 20, cex = 1.5, xlab = "Fitted", ylab = "Residuals")
abline(h = 0, lty = 2, col = "darkorange", lwd = 2)
15
40 10
5
30
mpg Residuals 0
20 -5
-10
10
-15
50 100 150 200 15 20 25 30 35
hp Fitted

