Page 183 - APPLIED PROCESS DESIGN FOR CHEMICAL AND PETROCHEMICAL PLANTS, Volume 1, 3rd Edition
P. 183

156                       Applied Process Design for Chemical  and Petrochemical  Plants

                                Greek Symbols                       6. Colebrook,  C.  F.  and  White,  C.  M.,  Inst-Civil Eng.,  Vol.  10,
                                                                      1937-1938, No.  i, pp.  99-118.
                  �  = Ratio of internal diameter of smaller to large pipe   7.  Olujic, Z.,  "Compute Friction Factors Fast for Flow in Pipes,"
                      sizes, or for orifices or nozzles,  contractions or   Chem.  Eng.  88, No.  25,  1981, p.  91.
                      enlargements                                  8.  Churchill, S. W.,  Chem Eng., Nov.  7,  1977,  pp.  91-92.
                  '( =  Kinematic viscosity,  sq ft/sec             9.  Connell, J.  R.,  "Realistic  Control-Valve  Pressure  Drops,"
                  'Y  =  Surface tension of liquid, dynes/centimeter   Chem.  Eng.,  94 No.  13,  1987,  p.  123.
                   E  =  Roughness factor,  effective height of pipe wall irreg-   10.  Shinskey,  F.  G.,  Process  Control  Systems,  2nd  Ed.,  1979,
                      ularities,  ft,  see Figure 2-11                McGraw-Hill  Book Co., p.  47.
                  0  =  Angles of divergence or convergence in enlarge-   11.  Catalog 6600,  Autoclave Engineers, Erie, Pa., p.  84.
                      ments or contractions in pipe systems, degrees   12.  Saad, M.A.,  Compressible Fluid Floio,  1985, Prentice-Hall,  Inc.,
                  'A.  = Two-phase flow term to determine probable type of   p.  26.
                      flow  =  [  (pg/0.075)  (PL/62.3) ]112,  where both liquid   13. Miller,  R.  W.,  Flow  Measurement  Engineering  Handbook,  2nd
                      and gas phases  are in turbulent flow  (two-phase   Ed., 1989,  McGraw-Hill  Pub.  Co.,  pp.  13-1.
                      flow)
                                                                   14.  Cheremisinoff,  N.  P.  and  R.  Gupta,  Handbook  of  Fluids  in
                  µ  = Absolute viscosity,  centipoise                Motion,  1983, Ann Arbor Science,  p.  218.
                  u, = Absolute viscosity,  lbs  (mass) I  (ft)  (sec)   15.  McKetta, J. J.,  Encyclopedia  of Chemical Processing and Design,
                                                                      Vol.  22,  1985, M.  Dekker,  Inc.,  p.  305.
                  µg  = Viscosity of gas or vapor phase,  centipoise
                  µL  = Viscosity of liquid phase,  centipoise     16.  Uhl, A.  E., et al., Project NB-13,  1965, American Gas Associa-
                                                                      tion New York.
                  p  =  Density of  fluid,  lbs/cu ft;  or lb/gal, Eq.  2-113
                                                                   17.  Hein,  M.,  "3P  Flow Analyzer,"  Oil and  Gas journal,  Aug.  9,
                  I: = Summation of items                             1982,  p.  132.
                                                      J
                  \jJ  =  Two-phase term= (73/"{)  [µL  (62.3/pd 2 1/3   18.  Ryans, J.  L.  and  Roper,  D.  L.,  Process  Vacuum.  Systems,  1986,
                   4>  =  Equations for 4>cn for two-phase pipe line flow   McGraw-Hill Book Co.
                                                                   19.  Pump Engineering  Data, Economy Pumps, Inc., 1951, Philadel-
                                                                      phia,  Pa.
                                  Subscripts
                                                                   20. King,  H. W.,  Handbook of  Hydraulics,  1939, McGraw-Hill Book
                                                                      Co., p.  197.
                   o  =  Base condition for gas measurement
                                                                   21. Sultan,  A.  A.,  "Sizing Pipe  for Non-Newtonian Flow,"  Chem.
                   1  =  Initial  or upstream  or inlet condition, or ii   Eng., Vol. 95, No.  18, Dec.  19,  1988, p.  140.
                   2  =  Second or downstream or outlet condition   22. R.  B.  Bird, \V.  E.  Stewart,  and E.  N.  Lightfoot,  Transport Ph.e-
                                                                      nomena,  1960, J. Wiley,  New York,  p.  12.
                   a  =  Initial capacity or first condition
                                                                   23.  Brodkey,  R.  S. and H.  C.  Hershey,  Transport Phenomena,  1988,
                   b  = New capacity or second condition
                                                                      McGraw-Hill Book Co., p.  752.
                   g  = Gas
                                                                   24.  Turian,  R.  M.  and T.  F.  Yuan,  "Flow of Slurries in Pipelines,"
                   L  =  Liquid                                       AJCHE]ournal,  Vol.  23,  May  1977,  pp.  232-243.
                  vc  =  Gradual  contraction                      25.  Derammelaere, R.H. and E.J. Wasp,  "Fluid Flow Slurry System
                                                                      and  Pipelines,"  Encyclopedia  of Chemical Processing  and Design,
                 VE  = Gradual enlargement
                                                                      1985,].].  McKetla,  Exec.  Ed., M. Dekker,  Vol. 22, p.  373.
                                                                   26.  Babcock, H. A. and D. A.  Carnell,  'Transportation of  Larger
                                  References                          Inert Particles in Pipelines," presented AICHE,  83rd Nation-
                                                                      al Meeting, Paper No. 40 f,  March 23,  1977, Houston, Texas.
               1. Moody,  L.  F.  "Friction  Factors for Pipe  Flow," Trans.  ASME,   27.  Steindorff,  G.  N.,  "Adequate Slurry Pipeline Design Exists,"
                Vol.  66, Nov.  1944,  pp.  671-678.                  Oil and Gasfournal;  Dec.  22,  1980,  p.  75.
               2.  Engineering  Data  Book,  2nd  Ed.,  1979,  Hydraulic  Institute,   28.  Ruskin,  R.  P.,  "Calculating  Line  Sizes  for  flashing  Steam
                30200 Detroit Road, Cleveland, Ohio 44145-1967.       Condensate," Ch.em.  Eng., Aug.  18,  1985,  p.  101.
               3.  Crane Co.  Engineering·  Div.  Technical Paper No.  410,  Flmv  of   29.  Dukler, A. E., Wicks, M. and Cleveland, R.  G., AICHE]oumal,
                Fluids  Through  Valves,  Fittings and Pipe,  1976.   1964, Vol.  10,  p.  44.
              4.  Shaw,  G.  V.,  Editor,  and  A.  W.  Loomis,  Cameron  Hydraulic   30. Soliman,  R.  H.  and  Collier,  P.  B.,  "Pressure  Drop  in  Slurry
                Data,  1942, Ingersoll-Rand Co., 11 Broadway,  New York, N .Y.,   Lines," Hydrocarbon Processing,  1990, Vol.  69, No.  11.
                also see  [ 54].                                   31. Morrison, G.  L., DeOtte,Jr., R.  E., Panak, D.  L., and Nail, G.
              5.  Perry,  R.H. and Don Green, Perry's  Chemical  Engineer's Hand-   H.,  'The  Flow  Field  Inside  an  Orifice  Flow  Meter,"  Chem.
                book,  6th Ed.,  1984,  McGraw-Hill, Inc.,  pp.  !'>-24.   Engr.  Prog.,  1990, Vol. 86, No.  7.
   178   179   180   181   182   183   184   185   186   187   188