Page 658 - APPLIED PROCESS DESIGN FOR CHEMICAL AND PETROCHEMICAL PLANTS, Volume 1, 3rd Edition
P. 658
Appendix 611
A-23.
A-22. Decimal Equivalents in Inches,
(Continued). MisceUaneous Formulas Feet and Millimeters
9. Volume or contents of partially filled horizontal cylin- In. Equiv. for Decimals Millimeter Equiv. In. Equiv. for
drical tanks: Decimal of In. for Decimal of In. Decimal of Ft.
=-===========-
= ::.
(9a) Tank cylinder or shell. (straight �'11 Y64
portion only; <,. e- 1l.i2 .0156 0.397 o/i6
Q = RL[( � 8 � °)-sinecose J ' _ ; c �� .0313 0.794 %
2
%
.0469
l.191
%,
gi1
Q = partially filled volume or 1!is .0625 1.588 l�fo
1.984
.0781
contents in cubic feet
R = radius of cylinder in feel %2 .0938 2.381 lYs
%1
2.778
L = length of straight portion of cylinder in feet % .1094 3.175 l'l'J.6
.1250
%., .1406 3.572 111.!
1 u,,fo
The straight portion or flange of the heads must be considered %2 .1563 3.969
a part of the cylinder. The length of flange depends upon the 1%
diameter of tank and thickness of head but ranges usually be· llft-,1 .1719 4.366 I 211\o
tween 2 and 4 inches. o/\6 .1875 4.763 2 1 4
lo/61 .2031 5.159 2'l)6
a = !::,. R = depth of liquid in feet �<2 .2188 5.556
6. = R == a rano 1 10.i .2344 5.953 2%
.
a
o/io
2 1
R-a Yi .2500 6.350
Cos e = l -6., or -R 1%1 .2656 6.747 3
3o/i6
e = degrees %2 .2813 7.144 3%
1%1 .2969 7.541 3il/i6
(9b) Herni-ellipsoidal Heads: o/is .3125 7.938 3%
Q=%V6."0-%6.l
�
Q = partially filled volume or 2�"' .3281 8.334 3 1 6
111:i2
.3438
contents in cubic' feet 2o/t;t 8.7.'II 4 1 ,fi
V = total volume of one head % .3594 9.128 4o/i6
41h
9.525
.3750
per formula (7d) 2g1M .3906 9.922 4111i6
6. = 1f == a ratio 1%2 .4063 10.319 47/s
2'V54 .4219 10.716
a = !::,. R = depth of liquid in feet 'vio .4375 11.113 51A6
514
R = radius of cylinder in feet 2%4 .4531 1 l.509 Sy\.,
1%2 .4688 11.906 5%
(9c) Dished or Basket Heads:
Formula (9b) gives partially filled volume within 3%1 .4844 12.303 5 1 �'io
practical limits, and formula (7d) gives V within 112 .5000 12.700 6
practical limits. 33/t;t .5156 13.097 6o/i.6
( 9d) Bumped Heads: 1*2 .5313 13.494 6%
Formula (9b) gives partially filled volume within 35/&1 .5469 13.891 69/i.6
practical" limits, and formula (7f) gives V. o/:is 14.288 6-%
Note: To obtain the volume or quantity of liquid in partially 3-VG! .5625 14.684 6 1 �16
.5781
filled tanks, add the volume per formula (9a) for the cylinder lo/32 .5938 15.081
or straight portion to twice (for 2 heads) the volume per 3%-1 .6094 15.478 71Ai
7'!,'16
formula (9b), (9c) or (9d) for the type of head concerned. % .6250 15.875 7%
41AJ1 .6406 16.272 711116
IO. Volume or contents of partially .filled hemi-ellipsoidal 2'732 .6563 16.669 17h
4%,
heads with major axis vertical: 1:yfo .6719 17.066 81 1fo
17.463
.6875
814
Q = Partially filled vol- 4%1 .7031 17.859 B1A6
ume or contents in 2ijl32
cubic feet 4%1 .7188 18.256 8%
.7344
18.653
V = Total volume of one % .7500 19.050 81o/16
9
head per formula 4o/c,1 .7656 19.447 93A6
(7d) �L�Jm 2%2 .7813 19.844 9%
R = Radius of cylinder
in feet 5�(,4 .7969 20.241 90A.6
R I: lo/]6 .8125 20.638 9%
(lOa) Upper Head: ------l <l � I 04 .8281 21.034 9 1 i}fo
Q = 112 V .6(1-%1::,.') % .8438 21.431 101,,s
5.)i1
a .8594 21.828 10-'Yio
!::,. = KR = a ratio 'Vs .8750 22.225 101h
a = 6. KR = depth "°Vca .8906 22.622 10 1 1h6
of liquid in feet 21)32 .9063 23.019 107/s
"%, .9219 23.416 111116
(10b) Lower Head: l(j,fo .9375 23.813 111Ji
Q = Ph V .6.'(l-Y:J6.) 6Vt,1 .9531 24.209 lH'l.6
!::,. = KR = a ratio 3Y:J2 .9688 24.606 11%
.
a
25.003
�
.9844
63,,(;l
12
a = 6. KR = depth 1 1.0000 25.400 11 1 6
of liquid in feet

