Page 536 - Python Data Science Handbook
P. 536

concatenation, 48, 142               model selection and, 364-366
                  creating copies, 46                bicycle traffic prediction
                  creating from Python lists, 39       linear regression, 400
                  creating from scratch, 39            time series, 202-209
                  data as, 33                        big-O notation, 92
                  DataFrame object as, 102           binary ufuncs, 52
                  DataFrame object constructed from, 105  binnings, 248
                  fixed-type, 38                     bitwise logic operators, 74
                  Index object as immutable array, 106  bogosort, 86
                  Index object vs., 106              Bokeh, 330
                  indexing: accessing single elements, 43  Boolean arrays
                  reshaping, 47                        Boolean operators and, 74
                  Series object vs., 99                counting entries in, 73
                  slicing, 44                          working with, 73-75
                  slicing multidimensional subarrays, 45  Boolean masks, 70-78
                  slicing one-dimensional subarrays, 44  Boolean arrays as, 75-78
                  sorting, 85-96                       rainfall statistics, 70
                  specifying output to, 56             working with Boolean arrays, 73-75
                  splitting, 49                      Boolean operators, 74
                  standard data types, 41            broadcasting, 63-69
                  structured, 92-96                    adding two-dimensional array to one-
                  subarrays as no-copy views, 46          dimensional array, 66
                  summing values in, 59                basics, 63-65
                  universal functions, 50-58           centering an array, 68
               arrows, 272-275                         defined, 58, 63
               asfreq() method, 197-199                in practice, 68
               asterisk (*), 7                         plotting two-dimensional function, 69
               automagic function, 19                  rules, 65-68
               axes limits, 228-230                    two compatible arrays, 66
                                                       two incompatible arrays, 67
               B
               bagging, 426                          C
               bandwidth (see kernel bandwidth)      categorical data, 376
               bar (|) operator, 77                  class labels (for data point), 334
               bar plots, 321                        classification task
               Basemap toolkit                         defined, 332
                  geographic data with, 298            machine learning, 333-335
                    (see also geographic data)       clustering, 332
                  installation, 298                    basics, 338-339
               basis function regression, 378, 392-396  GMMs, 353, 476-491
                  Gaussian basis functions, 394-396    k-means, 339, 462-476
                  polynomial basis functions, 393    code
               Bayesian classification, 383, 501-506   magic commands for determining execu‐
                  (see also naive Bayes classification)   tion time, 12
               Bayesian information criterion (BIC), 487  magic commands for pasting blocks, 11
               Bayesian Methods for Hackers stylesheet, 288  magic commands for running external, 12
               Bayess theorem, 383                     profiling and timing, 25-30
               bias–variance trade-off                 timing of snippets, 25-27
                  kernel bandwidth and, 497          coefficient of determination, 365


               518  |  Index
   531   532   533   534   535   536   537   538   539   540   541