Page 540 - Python Data Science Handbook
P. 540

as table, 343                        Seaborn, 314
                  classification, 351                  visualization of geographic distributions,
                  clustering, 353                         498-501
                  dimensionality, 352                kernel SVM, 411-414
                  pair plots, 317                    kernel transformation, 413
                  scatter plots, 236                 kernel trick, 413
                  visualization of, 345              keyboard shortcuts, IPython shell, 8
               isnull() method, 124                    command history, 9
               Isomap                                  navigation, 8
                  dimensionality reduction, 341, 355   text entry, 9
                  face data, 456-460                 Knuth, Donald, 25
               ix attribute (Pandas), 110
                                                     L
               J                                     labels/labeling
               jet colormap, 257                       classification task, 333-335
               joins, 145                              clustering, 338-339
                  (see also merging)                   dimensionality reduction and, 340-342
                  categories of, 147-149               regression task, 335-338
                  datasets, 146-158                    simple line plots, 230-232
                  many-to-one, 148                   Lambert conformal conic projection, 303
                  one-to-one, 147                    lasso regularization (L1 regularization), 399
                  set arithmetic for, 152            learning curves, computing, 372
               joint distributions, 316, 320         left join, 153
               Jupyter notebook                      left_index keyword, 151-152
                  launching, 2                       legends, plot
                  plotting from, 220                   choosing elements for, 251
                                                       customizing, 249-255
               K                                       multiple legends on same axes, 254
               k-means clustering, 339, 462-476        point size, 252
                  basics, 463-465                    levels, naming, 133
                  color compression example, 473-476  line plots
                  expectation-maximization algorithm,  axes limits for, 228-230
                    465-476                            labeling, 230-232
                  GMM as means of addressing weaknesses  line colors and styles, 226-228
                    of, 477-480                        Matplotlib, 224-232
                  simple digits data application, 470-473  line-by-line profiling, 28
               kernel (defined), 496                 linear regression (in machine learning), 390
               kernel bandwidth                        basis function regression, 392-396
                  defined, 496                         regularization, 396-400
                  selection via cross-validation, 497  Seattle bicycle traffic prediction example,
               kernel density estimation (KDE), 491-506   400
                  bandwidth selection via cross-validation,  simple, 390-392
                    497                              lists, Python, 37-41
                  Bayesian generative classification with,  loc attribute (Pandas), 110
                    501-506                          locally linear embedding (LLE), 453-455
                  custom estimator, 501-506          logarithms, 55
                  histograms and, 491-496
                  in practice, 496-506               M
                  Matplotlib, 248                    machine learning, 331


               522  |  Index
   535   536   537   538   539   540   541   542   543   544   545