Page 3 - 1202 Question Bank Additional Mathematics Form 5
P. 3

MUST


                   KNOW          Important Facts







                 Relationships between Angle in Degrees, Angle in      Limits and Its Relation to Differentiation
                 Radians, Arc Length and Area of Sector
                                                                     If y = f (x), then

                                                                                                       dy
                                                                                                  δy
                                                                                 f (x + δx) – f (x)
                                            A                                lim  ——————— =    lim   —– = —– = f  ʹ(x)
                      ©PAN ASIA PUBLICATIONS
                                                                            δx → 0   δx       δx → 0  δx  dx
                                        r
                                               s
                                         θ
                                     O                               where δx is a small change in x.
                                             B

                  θ °  θ rad     Arc length, s   Area of sector
                 —— = –—— = –——————–––— = –————–—–—–
                 360°   2π    2πr (Circumference)  πr  (Area of circle)
                                                 2

                Important Facts (Chapter 1)   1   @ Pan Asia Publications Sdn. Bhd.  Important Facts (Chapter 2)   7   @ Pan Asia Publications Sdn. Bhd.


                 Arc Length AB, Length of Chord AB, Area of Sector     Stationary Point
                 AOB and Area of the Shaded Segment
                                                                                                  dy
                                                                     A point P(x, y) is a stationary point if —– = 0.
               •  Arc length AB, s = rθ                     A                                     dx
               •  Length of chord AB:                    r           The stationary point P(x, y) is
                      2
                                2
                            2
                         2
                  ✤  AB  = r  + r  – 2r  cos θ ° (Cosine rule)  O  θ  s                 d  y
                                                                                         2
                                 r
                     AB
                  ✤  ——— =  ———–————                                 •  a maximum point if —–– , 0.
                                                                                        dx
                                                                                          2
                                180° – θ°
                    sin θ°  sin  ————– 2                     B                         d  y
                              1
                                                                                         2
                                   2
                                                                                        dx
                                                                                         2
                    (Sine rule)                                      •  a minimum point if —–– . 0.
                                  1                                                      d  y
                                                                                          2
                                    2
               •  Area of sector AOB = —r θ                          •  a point of inflection if —–– = 0.
                                  2                                                      dx 2
               •  Area of the shaded segment
                  =  Area of sector AOB – Area of triangle AOB
                    1     1
                      2
                            2
                  = — r θ – — r  sin θ
                    2     2
                Important Facts (Chapter 1)   3   @ Pan Asia Publications Sdn. Bhd.  Important Facts (Chapter 2)   9   @ Pan Asia Publications Sdn. Bhd.
                 Techniques of Differentiation                         Small Changes and Approximation of
                                                                       Certain Quantities
                             dy
               •  If y = ax , then —– = anx n – 1
                        n
                             dx             dy                       •  If y = f (x) and δx is a small change in x, then
               •  If y = a, where a is a constant, then —– = 0
                                            dx
                                                                                              dy
                                   dy                                                     δy = —– × δx
               •  If y = f (x) + g(x), then —– = f  ʹ(x) + gʹ(x)                              dx
                                   dx
                                          dy
                                              dy
                                                   du
               •  If y = g(u), where u = h(x), then —– = —– × —–
                                          dx  du   dx                •  If y = f (x) and x = g(t), thus the rate of change of y is:
               •  If y = uv, where u = f (x) and v = g(x), then
                                                                                              dy
                                                                                         dy
                                                                                                  dx
                  dy    dv   du                                                         —– = —– × —–
                  —– = u—– + v—–                                                         dt   dx   dt
                  dx    dx    dx
                       u
               •  If y = —, where u = f (x) and v = g(x), then
                       v
                        du    dv                                     •  If x changes from x to x + δx, then:
                       v—– – u—–                                                                δx
                  dy    dx    dx                                        ✤  The percentage change in x = —– × 100%
                                                                                                x
                  —– =  —————–
                  dx       v 2                                                                  δy
                                                                        ✤  The percentage change in y = —– × 100%
                                                                                                y
                Important Facts (Chapter 2)   5   @ Pan Asia Publications Sdn. Bhd.  Important Facts (Chapter 2)   11   @ Pan Asia Publications Sdn. Bhd.
         00B_1202 QB AMath F5.indd   3                                                                        02/12/2021   8:24 PM
   1   2   3   4   5   6   7   8