Page 4 - 1202 Question Bank Additional Mathematics Form 5
P. 4

MUST


                   KNOW          Common Mistakes







             Quotient Rule                                         Converting Radians into Degrees and Vice Versa
                    x + 1     d  x + 1                           •  Converting radians into degrees
                                     2
                               1
           Given y = —–—–, find —– —–—– .
                    2x – 1   dx 2x – 1                              For example: 1.35 rad
                    Correct                  Wrong                          Correct                Wrong
                      ©PAN ASIA PUBLICATIONS
                      du    dv                  dv   du                         180°                    π
                     v—– – u—–                 u—– – v—–                  1.35 × ——–             1.35 ×  ——–
                dy    dx    dx            dy    dx   dx                          π                     180°
            Use —– =  —————–        •  Use —– =  —————–
                dx       v 2              dx      v 2
            where u = x + 1 and v = 2x – 1.   where u = x + 1 and v = 2x – 1.  •  Converting degrees into radians
                                                du   dv             For example: 46°
                                              v—– + u—–
                                          dy    dx   dx                     Correct                Wrong
                                    •  Use —– =  —————–
                                          dx      v 2
                                                                                                      180°
                                                                                 π
                                      where u = x + 1 and v = 2x – 1.      46° ×  ——–            46° × ——–
                                                                                180°
                                                                                                        π
           Common Mistakes (Chapter 2)   8   @ Pan Asia Publications Sdn. Bhd.  Common Mistakes (Chapter 1)   2   @ Pan Asia Publications Sdn. Bhd.

             Second Derivative Method                              Area of ∆AOB
           One of the test to determine whether a stationary point is a maximum        O   r   A
           point or a minimum point.                                                1.45 rad
                    Correct                  Wrong                                         B
            Given a stationary point (a, b),  Given a stationary point (a, b),   Correct           Wrong
            then it is a maximum point if   then it is a maximum point if   Must convert an angle in   Angle in radians is not
             d  y                    d  y
                                      2
              2
            —–– , 0.                —–– . 0.                      radians into degrees first.  converted into degrees.
             dx 2                    dx 2                                       180°      Area of ΔAOB
            Given a stationary point (a, b),  Given a stationary point (a, b),   1.45 rad = 1.45 × ——–  1
                                                                                 π
                                                                                              2
            then it is a minimum point if   then it is a minimum point if      = 83.08°   = —r  sin θ
                                                                                            2
             d  y                    d  y                         Area of ΔAOB              1
                                      2
              2
            —–– . 0.                —–– , 0.                        1                     = —r  sin (1.45)
                                                                                              2
             dx 2                    dx 2                         = — r  sin θ              2
                                                                       2
                                                                    2                       1
                                                                                              2
                                                                    1
                                                                  = — r  sin 83.08°       = —r (0.0253)
                                                                                            2
                                                                       2
                                                                    2                     = 0.0127r 2
                                                                  = 0.4964r 2
           Common Mistakes (Chapter 2)   10   @ Pan Asia Publications Sdn. Bhd.  Common Mistakes (Chapter 1)   4   @ Pan Asia Publications Sdn. Bhd.
             Indefinite Integral                                   Chain Rule
                   2
           ∫  ———— dx =                                          —–[3(2x  – x) ] =
                                                                  d
                4
                                                                            4
                                                                        2
                                                                  dx
             (3x + 1)
                    Correct                  Wrong                         Correct                 Wrong
                                                                   d     2   4             d     2   4
                4
                                         4
                                                                                          —–[3(2x  – x) ]
                    2
            ∫  ———— dx              ∫  ———— dx                    —–[3(2x  – x) ]  d  2   = 3(4)(2x  – x) 4 – 1
                                            2
                                                                                           dx
                                                                   dx
                                      (3x + 1)
              (3x + 1)
                                                                                                 2
                                                                             4 – 1
                                                                         2
                                                                                dx
              ∫
                                      ∫
                                                                                                2
            =  4(3x + 1)  dx        =  4(3x + 1)  dx              = 3(4)(2x  – x)   —–(2x  – x)  = 12(2x  – x) 3
                                             –2
                     –2
                                                                  = 12(2x  – x) (4x – 1)
                          d
                                                                        2
                                                                            3
                          —–(3x + 1) = 3
                                                                             2
              4(3x + 1) –2 + 1  dx    4(3x + 1) –2 + 1            = 12(4x – 1)(2x  – x) 3  or
            = —————– + c            = —————– + c
               (–2 + 1)(3)              –2 + 1    d                                        d
                                                                                                     4
                                                                                                 2
              4(3x + 1) –1            4(3x + 1) –1  —–(3x + 1) = 3                        —–[3(2x  – x) ]
                                                                                           dx
                                                  dx
            = ————– + c             = ————– + c is missing
                                                                                             d
                 –3                      –1                                               = —–[(6x  – 3x) ]
                                                                                                 2
                                                                                                      4
                  4                      4                                                  dx
            = – ——–—– + c           = – —––— + c
               3(3x + 1)                3x + 1
           Common Mistakes (Chapter 3)   12   @ Pan Asia Publications Sdn. Bhd.  Common Mistakes (Chapter 2)   6   @ Pan Asia Publications Sdn. Bhd.
         00B_1202 QB AMath F5.indd   4                                                                        02/12/2021   8:24 PM
   1   2   3   4   5   6   7   8   9