Page 21 - Past Year
P. 21

19 | P a g e

                                                     x   2y   5
                                                           
                                                    3x  2y z  10
                                                           
                                                    2x  4y z  13


                                    5 8          1 2
               5.      Given  P        and Q        .
                                    3 1          1 5 
                                                                            1 3
                                                          
                       (a)    Determine matrix S if  S   (P Q )R  and  R       .
                                                                            2 1 

                       (b)    Hence, find the inverse of matrix S.




                               2   2    2
                                          
               6.      If  A       1    1  1  and XA = 4I where X is a 3 x 3 matrix and I is an identity matrix.
                                          
                                 8  0  4   

                       (a)    Find the interest of matrix A using the adjoint method.

                       (b)    Hence, find matrix X.


                                               6      4
                                                               2
               7.       (a)   The matrix     A        .   If   A  – pA – qI = 0 where p and q are real
                                                1   0  
                              numbers, I is the 2 x 2 identity matrix and 0 is the null matrix 2 x 2, find p and q.

                                                                       1   1        3   x  2 
                                                                                             
                                                                       
                                                                                      
                                                                                           
                       (b)    Given that the matrix equation AX = B is    2  1   4 y    3 .
                                                                       
                                                                                           
                                                                                             
                                                                                      
                                                                                       
                                                                       1   1    1        z   1  
                                                                       
                                                                                           

                              (i)    Find the determinant of matrix A.
                                                                       5    p    3  
                                                                                    
                              (ii)   Given the cofactor matrix of  A      4  2   2 ,  find p and  q.
                                                                      
                                                                                    
                                                                       q    2   1  
                                                                      
                                                                                    
                              (iii)   Determine the adjoint matrix of A and hence find the inverse of A.
   16   17   18   19   20   21   22   23   24   25   26