Page 29 - Past Year
P. 29

27 | P a g e

                               5   2  3         a   2    36
                                                               
               26.     If  P       1   4 3 ,  P           b    2  24   and  PQ  4I   ,  where  I  is  the  3x3  identity
                                                               
                                3   1  2        26   2  c   

                       matrix, determine the values of a, b and c.


                                                                                   1   2   1 

               27.     A and B are square matrices such that BA = B . If  B    -1      1  0  1       , find A  and
                                                                                                        -1
                                                                                   1        
                                                                                      1    2  
                       hence, A.



                                                2  3  1
                                                          
               28.     Given the matrix  A       0  1   4 .
                                                          
                                                         
                                                  5 6   1 

                       (a)    Determine the adjoint matrix of A.


                                                                  -1
                       (b)    By using the result in (a) above, find A . Hence, solve the system of linear equations
                              below
                                                             
                                                     2x  3y z   5
                                                          y  4z  
                                                                   4
                                                     5x  6y z   9
                                                             


                                    2 3 4              9   27   3 
                                                                      
                                            
                                                       
                                                                                                        
                                                                                                         1
               29.     Given   C      5 0 1  and   D   7  26  18 . Find CD and hence determine C .
                                            
                                                                      
                                                       
                                                                  
                                    8 9 3              45  6     15 

                                       7 2
                                                                                2
                                                                                        I
               30.     (a)    If  Y        , show that Y satisfies the equation Y  8Y   O   with I is an
                                       3 1 
                              identity matrix 2 2  . Hence, find Y  1    .
   24   25   26   27   28   29   30   31   32   33   34