Page 4 - Past Year
P. 4

2 | P a g e

                      (b)    A    . B

                      (c)    A    . C
               17.    Solve log x  4log 3   3.
                               3
                                         x
                      Simplify the following expressions
               18.


                                  
                                   1
                                      )
                              x 2 (x y 2 3
                      (a)
                                 y  2
                                2 5
                      (b)
                             2 5    2


               19.    Find the values of x that satisfy the equation    7 3 2 9 x    3  x  .


                                                                      
                                                                             -1
                                                                             x
               20.    By substituting    a  3 , solve the equation 9   x  3 28(3 ).
                                           x
                                      
               21.    Solve  3 ln 2x   3 ln 27
                             5 
               22.    Solve  x e  3ln x    4x   21
                                                                          
                                                                                  2
                                                                 4
                                                                       
                                                           log (x  4) 1 log (x     4)
               23.    Find the values satisfying the equation  4               4
                                        5(2 ) 4   x  16
                                               
                                            x
                                             1
               24.    Solve the equation
               25.    By substituting  a  2 , solve the equation 4   x  3   2 x 2
                                          x
               26.    Given that  81  3 (2y 3)x   and  2 18y 6x   64 . Find the possible values of  and  .x  y
                                    y
                                                             xy
                                                          10
               27.    Solve the equation3log 3 log  3  x 
                                                    3
                                            x
                                                           3
                                        3   10 3 x 1
                                                 1 0 
                                         2x
               28.    Solve the equation
                                 
               29.    Given  P    ,7  , Q    3,4   and  R   2,   . Represent  P  ,Q  and R  on a line number.
                      Hence, find the solution sets for  P   ,Q  and  P  R
                                                                              '
                                                                  R
                                                         Q
                                                                               .
                                                3
               30.    Solve the equation ln x      2 .
                                              ln x
                                            1        1
               31.    Prove that log      xy  log x   log y
                                   16
                                            2    4    2   4
                                           2x
                                                     x
                                        9 3
               32.    Solve the equation   22 3    15 0   .
                                  
                                                    
               33.    Given  p  7 5 2 and q    7 5 2.Find the value of y such that
                                             
                        1    1     y  1  50 .
                       p   1 q   1
   1   2   3   4   5   6   7   8   9