Page 5 - Past Year
P. 5

3 | P a g e


                                      3 2n 3   18   3   2 n   1
               34.    (a)    Simplify            2     .
                                              
                                           5 3 n


                                                                                    1
                                                                           
                                                                  log    8 log 27   2  log 5
                      (b)    Without using the calculator, evaluate   10       10         10  .
                                                                        3 log 6 log 5
                                                                                
                                                                        2    10      10

                                          
                      (c)    Solve  x  5 4x   13.



                                                       
               35. Solve the equation  2log 3 log x  3   3 0.
                                          x

               36. Given √   +   √3 =   5    where p and q are integers. Find the value of p and q without using a
                                      2+√3
                  calculator.


                                                    
                                        
               37. Solve the equation 9 + 4 = 5(3 ).
                                                     
                                        
               38. Solve the equation 4 − 16 = 6(2 )

                                         2
                                                               2
               39. Show that log (   + √   − 1) + log (   + √   − 1) = 0
                                                       
                                  

                                              
                                               2 10
                                        1/3
                                            6
                                      64 p q r
                                           
                                              
                                               10 2
                                            2
               40. (a)       Simplify 8 2/3  p q r
                                    4 x   2 y
                       (b)          Solve        1 if  xy 
                                                            9
                                       3 x
                                                                                            
                                                                                         
                                                                            
               41. Find the values of x which satisfies the equation log (5 x  ) log (x  2) 3 log (1 x
                                                                                                    
                                                                                                       )
                                                                                 2
                                                                                                 2
                                                                    2
                                                 
                                                     
               42. Solve the equation:    3  2x 1    3 7 3 x
                                      2
                                           1             1
                                      11           11  2
                                           2
               43. a) Evaluate    3         3      without using calculator
                              
                              
                                           
                                                        
                                      2            2  
                                   1        1
                  b) Show that                    1
                                log pq   log pq
                                             q
                                   p
                                  n
                              243   3 2n 1
                                  5
                                 n
               44. a) Evaluate   9  3 n 1
   1   2   3   4   5   6   7   8   9   10