Page 47 - Past Year
P. 47

45 | P a g e

                      (b)    Find the value of  ( 3)f  ,  (0)f   and   (1)f  .



                                                                       x                        2
                                                                                                      
                                                                                      g
              21.     (a)    Functions  f  and  g  are defined by ( )f x    ,  x  1 and    x  ax  bx c ,
                                                                      x  1
                             ,x  where a, b  and  c  are constants.
                                               
                             (i)    Find  f f , and hence , determine the inverse of  f .

                                                                                2x   2  5x   2
                             (ii)   Find the values of   a, b and c if  g f    x   2   . .
                                                                                  x    1


                                                                                2
                                                                                    q
                      (b)    Find the values of   q if the function      4f x   x    2  and   f  1     5   3 ; x   0 .


                                                        2
                                                           2
                                         f
              22.     Given the function    x    p x    3   If  f   1   2    2  , find the value of  p.

              23.     The functions f  and g are given by    3f x     e  3x     and  ( )g x   ln(3x   5) .

                      (a)    Find the value of x such that  f g   4x   .


                      (b)     If  f g  1   4b  , find the value of    .



                                                    2
                                            f
              24.     Consider the function    x   x  4x  3.
                     (a)     Express    x  in the form of x h     2  k  , such that  x h  . Hence, find the value of
                                      f
                             h.

                                                 f
                     (b)     Sketch the graph of    x  for  x h  and explain why f is a one-to-one function. State
                                          f
                             the range of    x .
                     (c)     Find  f   1   x  and hence, evaluate  f   1   3  .



                                     
                                   5 ax
              25.     Given  ( )g x     and  ( ) 2h x   x   2  5. Find
                                      2
                                 x
                      (a)    g  1 ( )
                                                          
                                                        2
                                                              
                      (b)    the value of a so that  2g  1 ( ) h x
                                                                 )
                                                              (
                                                       x
                      (c)
                                                                 2x 2  ,    x   0
              26.     A piecewise function  f  is given as  ( )f x  
                                                                           4
                                                                               x
                                                                x  2 ,        0
   42   43   44   45   46   47   48   49   50   51   52