Page 49 - Past Year
P. 49

47 | P a g e

                         (b)     Given  ( )h x   x  3 , x  3, find  h  1   1 . Hence, find  g h  1 (1) .






              34.     Given

                                            f    x   1, x  5
                                                   x

                                            g   x   , x x   0

                      (a)    Write down an expression for the composite function g f   .x

                      (b)    Find the expression for each of the following inverse functions


                             (i)     f   1   x
                                           
                                            1
                             (ii)   g f     x
                                                 1
                                                
                                                   x
                      (c)    Verify  that  g f      f    1  g   1   x .  Hence,  find  the  domain  and  range  for
                                     1
                             g f     x .
              35.     (a)    Given that    lnf x   3x    2


                             (i)    Show that    x is one-to-one.
                                               f
                             (ii)   Find the inverse function of    x .
                                                                f

                             (iii)   State the domain and range of    x and  f   1   x .
                                                                  f
                                                                               
                                                                            13 log x
                                                             
                      (b)    Given  two  functions    7f x   4x m   and    x   7  .  If    x  and    x are
                                                                                           f
                                                                                                      g
                                                                     g
                                                                                n
                             inverse of each other, express    in terms of    and   .
   44   45   46   47   48   49   50   51   52   53   54