Page 60 - Elementary Algebra Exercise Book I
P. 60

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions


                                                                       2
                                                    x
               When  y = 101, then (i) implies  102 = 100 ⇒ x =           .
                                                                    lg 102
                                       2
                                                           2
               We can verify that x − 10 = 1 =1 and x − 10 = 1 ,y = 101 are the two solutions of the original
                                   =
                                                      =
                                         ,y
                                                         lg 102
                                      lg 2
               system of equations.
               2.34    If  a, b, c  are nonzero real numbers, solve the system of equations
                                                       xy
                                                               = c,
                                                     ay + bx
                                                       yz
                                                               = a,
                                                     bz + cy
                                                       zx
                                                               = b.
                                                     az + cx

               Solution:

                                                       xy
                                                               = c
                                                     ay + bx
                                                        yz
                                                               = a
                                                     bz + cy
                                                        zx
                                                               = b
                                                     az + cx


               ⇔


                                                     ay + bx       1
                                                               =
                                                       xy          c
                                                     bz + cy       1
                                                               =
                                                        yz         a
                                                     az + cx       1
                                                               =
                                                       zx          b


               ⇔
                                                   a   b       1
                                                     +     =       (i)
                                                   x   y       c
                                                   b   c       1
                                                     +     =       (ii)
                                                   y   z       a
                                                   a   c       1
                                                     +     =       (iii)
                                                   x   z       b



                            a    b   c   1  1    1   1
               (i)+(ii)+(iii):   +  +  =      +   +      (iv). Then (iv)-(ii), (iv)-(iii), (iv)-(i):
                            x    y   z   2  a    b   c
                                                2
                                   2
                      2
               =    2a bc  ,y =  2b ca  ,z =   2c ab  .
                  ab+ac−bc      bc+ab−ac     ca+bc−ab







                                            Download free eBooks at bookboon.com
                                                            60
   55   56   57   58   59   60   61   62   63   64   65