Page 285 - Elementary_Linear_Algebra_with_Applications_Anton__9_edition
P. 285
Table 4 Illustration Equations Standard Matrix
Operator
Orthogonal projection on the x-axis
Orthogonal projection on the y-axis
Table 5 Illustration Equations Standard Matrix
Operator
Orthogonal projection on the -plane
Orthogonal projection on the -plane
Orthogonal projection on the -plane
Rotation Operators
An operator that rotates each vector in through a fixed angle is called a rotation operator on . Table 6 gives the formula
for the rotation operators on . To show how this is derived, consider the rotation operator that rotates each vector
counterclockwise through a fixed positive angle . To find equations relating x and , let be the angle from the
positive x-axis to x, and let r be the common length of x and w (Figure 4.2.4).

