Page 175 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 175

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                 Ї ƒ”‡ƒ ‘ˆ –Ї •‡…–‘” ‘ˆ –Ї …‹”…އ •Š‘™ ‹ ȏ ‹‰ ͳǤ͹͸Ȑ ‹• †‡”‹˜‡† ƒ• ˆ‘ŽŽ‘™•ǣ



























                                          [Fig 1.76: cone develops to a sector of a circle]

                Let the sector subtend an angle ‘θ’ at the center of the circle. For an angle ‘2π’, the area of the
                sector is the area of the circle itself, for an angle ‘θ’, the area of the circle is got as follows:
                                                                      2
                                                                    πr ∗ θ   1
                                                                                2
                Area of a sector of a circle for a subtended angle  θ  =    =  r θ
                                                                      2π     2
                Let us apply above observation to the case in hand. Therefore, the net area of the sector in
                [Fig 1.76] is given by:

                                     1       1         1                1
                                                             2
                                                                  2
                                        2
                                                 2
                 Net area of sector =    R θ −  R θ  =    θ R − R    =    θ  R + R   ∗  R − R
                                                                                          1
                                                                                               2
                                                                              1
                                                                                   2
                                     2  1    2   2     2     1    2     2

                From the [Fig 1.76], we know that   R − R   = S  and   R θ  = 2πr   and similarly
                                                                       1
                                                                                1
                                                         2
                                                    1
                  R θ  = 2πr  .
                            2
                   2
                                                             1
                Therefore, we have the net area of the sector =    2πr + 2πr   ∗ S  =  π r + r   ∗ S
                                                             2     1      2           1    2








                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 78
   170   171   172   173   174   175   176   177   178   179   180