Page 386 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 386

320.e2  Part IV  Disorders of Hematopoietic Cell Development


            conditions,  generate  red  blood  cells  that  recapitulate  the  rare  blood   76.  Majeti  R,  Park  CY,  Weissman  IL:  Identification  of  a  hierarchy  of
            phenotype. Transfusion 54:1059, 2014.                 multipotent hematopoietic progenitors in human cord blood. Cell Stem
         51.  Giarratana MC, Rouard H, Dumont A, et al: Proof of principle for   Cell 1:635, 2007.
            transfusion of in vitro-generated red blood cells. Blood 118:5071, 2011.  77.  Bonig H, Chang KH, Nakamoto B, et al: The p67 laminin receptor
         52.  Civin CI, Loken MR: Cell surface antigens on human marrow cells:   identifies human erythroid progenitor and precursor cells and is func-
            dissection of hematopoietic development using monoclonal antibodies   tionally important for their bone marrow lodgment. Blood 108:1230,
            and multiparameter flow cytometry. Int J Cell Cloning 5:267, 1978.  2006.
         53.  Sieff CA: Membrane antigen expression during hemopoietic differentia-  78.  Storms RW, Trujillo AP, Springer JB, et al: Isolation of primitive human
            tion. Crit Rev Oncol Hematol 5:1, 1986.               hematopoietic  progenitors  on  the  basis  of  aldehyde  dehydrogenase
         54.  Broxmeyer HE: Relationship of cell-cycle expression of Ia-like antigenic   activity. Proc Natl Acad Sci USA 96:9118, 1999.
            determinants on normal and leukemia human granulocyte-macrophage   79.  Edvardsson  L,  Dykes  J,  Olofsson  T:  Isolation  and  characterization
            progenitor cells to regulation in vitro by acidic isoferritins. J Clin Invest   of  human  myeloid  progenitor  populations—TpoR  as  discriminator
            69:632, 1982.                                         between common myeloid and megakaryocyte/erythroid progenitors.
         55.  Torok-Storb B: Cellular interactions. Blood 72:373, 1988.  Exp Hematol 34:599, 2006.
         56.  Krause DS, Fackler MJ, Civin CI, et al: CD34: structure, biology, and   80.  Kina  T,  Ikuta  K,  Takayama  E,  et al:  The  monoclonal  antibody
            clinical utility. Blood 87:1, 1996.                   TER-119  recognizes  a  molecule  associated  with  glycophorin  A  and
         57.  Cheng J, Baumhueter S, Cacalano G, et al: Hematopoietic defects in   specifically  marks  the  late  stages  of  murine  erythroid  lineage.  Br  J
            mice lacking the sialomucin CD34. Blood 87:479, 1996.  Haematol 109:280, 2000.
         58.  Osawa M, Hanada K, Hamada H, et al: Long-term lymphohematopoi-  81.  Auffray I, Marfatia S, de Jong K, et al: Glycophorin A dimerization
            etic reconstitution by a single CD34-low/negative hematopoietic stem   and  band  3  interaction  during  erythroid  membrane  biogenesis:  in
            cell. Science 273:242, 1996.                          vivo studies in human glycophorin A transgenic mice. Blood 97:2872,
         59.  Bhatia M, Bonnet D, Murdoch B, et al: A newly discovered class of   2001.
            human hematopoietic cells with SCID-repopulating activity. Nat Med   82.  Harandi  OF,  Hedge  S,  Wu  DC,  et al:  Murine  erythroid  short-term
            4:1038, 1998.                                         radioprotection requires a BMP4-dependent, self-renewing population
         60.  Sato T, Laver JH, Ogawa M: Reversible expression of CD34 by murine   of stress erythroid progenitors. J Clin Invest 120:4507, 2010.
            hematopoietic stem cells. Blood 94:2548, 1999.     83.  Dev A, Fang J, Sathyanarayana P, et al: During EPO or anemia chal-
         61.  Okuno Y, Iwasaki H, Huettner CS, et al: Differential regulation of the   lenge, erythroid progenitor cells transit through a selectively expandable
            human and murine CD34 genes in hematopoietic stem cells. Proc Natl   proerythroblast pool. Blood 116:5334, 2010.
            Acad Sci USA 99:6246, 2002.                        84.  England  SJ,  McGrath  KE,  Frame  JM,  et al:  Immature  erythroblasts
         62.  Lansdorp PM, Sutherland HJ, Eaves CJ: Selective expression of CD45   with  extensive  ex  vivo  self-renewal  capacity  emerge  from  the  early
            isoforms  on  functional  subpopulations  of  CD34+  hemopoietic  cells   mammalian fetus. Blood 117:2708, 2011.
            from human bone marrow. J Exp Med 172:363, 1990.   85.  Tirelli V,  Ghinassi  B,  Migliaccio  AR,  et al:  Phenotypic  definition  of
         63.  Papayannopoulou T, Brice M, Farrer D, et al: Insights into the cellular   the progenitor cells with erythroid differentiation potential present in
            mechanisms  of  erythropoietin-thrombopoietin  synergy.  Exp  Hematol   human adult blood. Stem Cells Int 2011:602483, 2011.
            24:660, 1996.                                      86.  Coulon  S,  Dussiot  M,  Grapton  D,  et al:  Polymeric  IgA1  controls
         64.  Debili N, Coulombel L, Croisille L, et al: Characterization of a bipo-  erythroblast  proliferation  and  accelerates  erythropoiesis  recovery  in
            tent erythro-megakaryocytic progenitor in human bone marrow. Blood   anemia. Nat Med 17:1456, 2011.
            88:1284, 1996.                                     87.  Yamanaka S, Blau HM: Nuclear reprogramming to a pluripotent state
         65.  Mikkola  HK,  Fujiwara Y,  Schlaeger TM,  et al:  Expression  of  CD41   by three approaches. Nature 465:704, 2010.
            marks the initiation of definitive hematopoiesis in the mouse embryo.   88.  Hiroyama  T,  Miharada  K,  Sudo  K,  et al:  Establishment  of  mouse
            Blood 101:508, 2003.                                  embryonic  stem  cell-derived  erythroid  progenitor  cell  lines  able  to
         66.  Desmond R, Townsley DM, Dumitriu B, et al: Eltrombopag restores   produce functional red blood cells. PLoS ONE 3:e1544, 2008.
            trilineage hematopoiesis in refractory severe aplastic anemia that can be   89.  Chang KH, Nelson AM, Cao H, et al: Definitive-like erythroid cells
            sustained on discontinuation of drug. Blood 123:1818, 2014.  derived  from  human  embryonic  stem  cells  coexpress  high  levels  of
         67.  Sawada K, Krantz SB, Sawyer ST, et al: Quantitation of specific binding   embryonic  and  fetal  globins  with  little  or  no  adult  globin.  Blood
            of  erythropoietin  to  human  erythroid  colony-forming  cells.  J  Cell   108:1515, 2006.
            Physiol 137:337, 1988.                             90.  Lu SJ, Feng Q, Park JS, et al: Biologic properties and enucleation of
         68.  Broudy VC, Lin N, Brice M, et al: Erythropoietin receptor character-  red  blood  cells  from  human  embryonic  stem  cells.  Blood  112:4475,
            istics on primary human erythroid cells. Blood 77:2583, 1991.  2008.
         69.  Sawada  K,  Krantz  SB,  Dai  CH,  et al:  Purification  of  human  blood   91.  Chang  CJ,  Mitra  K,  Koya  M,  et al:  Production  of  embryonic  and
            burst-forming units-erythroid and demonstration of the evolution of   fetal-like red blood cells from human induced pluripotent stem cells.
            erythropoietin receptors. J Cell Physiol 142:219–230, 1990.  PLoS ONE 6:e25761, 2011.
         70.  Migliaccio G, Migliaccio AR, Adamson JW: In vitro differentiation of   92.  Papapetrou EP, Lee G, Malani N, et al: Genomic safe harbors permit
            human granulocyte/macrophage and erythroid progenitors: compara-  high beta-globin transgene expression in thalassemia induced pluripo-
            tive  analysis  of  the  influence  of  recombinant  human  erythropoietin,   tent stem cells. Nat Biotechnol 29:73, 2011.
            G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum-deprived   93.  Chaurasia P,  Berenzon  D, Hoffman R: Chromatin-modifying  agents
            cultures. Blood 72:248, 1988.                         promote the ex vivo production of functional human erythroid progeni-
         71.  Sawyer  ST,  Krantz  SB:  Transferrin  receptor  number,  synthesis,  and   tor cells. Blood 117:4632, 2011.
            endocytosis during erythropoietin-induced maturation of Friend virus-  94.  Hiroyama T, Miharada K, Kurita R, et al: Plasticity of cells and ex vivo
            infected erythroid cells. J Biol Chem 261:9187, 1986.  production of red blood cells. Stem Cells Int 2011:195780, 2011.
         72.  Cotner T, Gupta AD, Papayannopoulou T, et al: Characterization of   95.  Kang  YA,  Sanalkumar  R,  O’Geen  H,  et al:  Autophagy  driven  by  a
            a novel form of transferrin receptor preferentially expressed on normal   master regulator of hematopoiesis. Mol Cell Biol 32:226, 2012.
            erythroid progenitors and precursors. Blood 73:214, 1989.  96.  Keerthivasan G, Small S, Liu H, et al: Vesicle trafficking plays a novel
         73.  Ajioka RS, Phillips JD, Kushner JP: Biosynthesis of heme in mammals.   role in erythroblast enucleation. Blood 116:3331, 2010.
            Biochim Biophys Acta 7:723–2006, 1763.             97.  Stohlman F, Jr, Ebbe S, Morse B, et al: Regulation of erythropoiesis.
         74.  Hentze  MW,  Muckenthaler  MU,  Andrews  NC:  Balancing  acts:   XX. Kinetics of red cell production. Ann N Y Acad Sci 149:156, 1968.
            molecular control of mammalian iron metabolism. Cell 117:285, 2004.  98.  Adolfsson J, Mansson R, Buza-Vidas N, et al: Identification of Flt3+
         75.  Ponka  P:  Tissue-specific  regulation  of  iron  metabolism  and  heme   lympho-myeloid stem cells lacking erythro-megakaryocytic potential a
            synthesis: distinct control mechanisms in erythroid cells. Blood 89:1,   revised road map for adult blood lineage commitment. Cell 121:295,
            1997.                                                 2005.
   381   382   383   384   385   386   387   388   389   390   391