Page 388 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 388

320.e4  Part IV  Disorders of Hematopoietic Cell Development


        151.  Chasis JA, Coulombel L, McGee S, et al: Differential use of protein   174.  Iacopetta  BJ,  Morgan  EH, Yeoh  GC: Transferrin  receptors  and  iron
            4.1 translation initiation sites during erythropoiesis: implications for   uptake  during  erythroid  cell  development.  Biochim  Biophys  Acta
            a  mutation-induced  stage-specific  deficiency  of  protein  4.1  during   687:204, 1982.
            erythroid development. Blood 87:5324, 1996.       175.  Seligman  P,  Klausner  R,  Huebers  H:  Molecular  mechanisms  of  iron
        152.  Satchwell TJ, Bell AJ, Pellegrin S, et al: Critical band 3 multiprotein   metabolism. In Stamatoyannopoulos G, Nienhuis AW, editors: Molecu-
            complex interactions establish early during human erythropoiesis. Blood   lar basis of blood diseases, Philadelphia, PA, 1987, WB Saunders, p 219.
            118:182, 2011.                                    176.  Huebers HA, Finch CA: The physiology of transferrin and transferrin
        153.  Birkenmeier  CS,  Barker  JE:  Hereditary  haemolytic  anaemias:  unex-  receptors. Physiol Rev 67:520, 1987.
            pected  sequelae  of  mutations  in  the  genes  for  erythroid  membrane   177.  Kawabata H, Yang R, Hirama T, et al: Molecular cloning of transferrin
            skeletal proteins. J Pathol 204:450, 2004.            receptor 2. A new member of the transferrin receptor-like family. J Biol
        154.  Nienhuis AW, Benz EJ, Jr: Regulation of hemoglobin synthesis during   Chem 274:20826, 1999.
            the  development  of  the  red  cell  (first  of  three  parts).  N  Engl  J  Med   178.  Lambert  LA,  Mitchell  SL:  Molecular  evolution  of  the  transferrin
            m297:1318, 1977.                                      receptor/glutamate  carboxypeptidase  II  family.  J  Mol  Evol  64:113,
        155.  Stamatoyannopoulos  G,  Nienhuis  AW:  Hemoglobin  switching.  In   2007.
            Stamatoyannopoulos G, Nienhuis AW, editors: Molecular Basis of Blood   179.  Keel SB, Doty R, Liu L, et al: Evidence that the expression of transferrin
            Diseases, Philadelphia, PA, 1987, WB Saunders.        receptor 1 on erythroid marrow cells mediates hepcidin suppression in
        156.  Papayannopoulou T, Brice M, Stamatoyannopoulos G: Hemoglobin F   the liver. Exp Hematol 43:469–478, 2015.
            synthesis in vitro: evidence for control at the level of primitive erythroid   180.  Wallace DF, Summerville L, Subramaniam VN: Targeted disruption of
            stem cells. Proc Natl Acad Sci USA 74:2923, 1977.     the hepatic transferrin receptor 2 gene in mice leads to iron overload.
        157.  Blau  CA,  Constantoulakis  P,  al-Khatti  A,  et al:  Fetal  hemoglobin   Gastroenterology 132:301, 2007.
            in  acute  and  chronic  states  of  erythroid  expansion.  Blood  81:227,   181.  Nakamaki T, Kawabata H, Saito B, et al: Elevated levels of transferrin
            1993.                                                 receptor  2  mRNA,  not  transferrin  receptor  1  mRNA,  are  associated
        158.  Papayannopoulou T, Vichinsky E, Stamatoyannopoulos G: Fetal Hb   with  increased  survival  in  acute  myeloid  leukaemia.  Br  J  Haematol
            production  during  acute  erythroid  expansion.  I.  Observations  in   125:42, 2004.
            patients with transient erythroblastopenia and post-phlebotomy. Br J   182.  Nai A, Lidonnici MR, Rausa M, et al: The second transferrin receptor
            Haematol 44:535, 1980.                                regulates red blood cell production in mice. Blood 125:1170, 2015.
        159.  Mabaera R, West RJ, Conine SJ, et al: A cell stress signaling model of   183.  Robb  A,  Wessling-Resnick  M:  Regulation  of  transferrin  receptor  2
            fetal hemoglobin induction: what doesn’t kill red blood cells may make   protein levels by transferrin. Blood 104:4294, 2004.
            them stronger. Exp Hematol 36:1057, 2008.         184.  Vaulont S, Lou DQ, Viatte L, et al: Of mice and men: the iron age. J
        160.  Cao H: Pharmacological induction of fetal hemoglobin synthesis using   Clin Invest 115:2079, 2005.
            histone deacetylase inhibitors. Hematology 9:223, 2004.  185.  Feder JN, Gnirke A, Thomas W, et al: A novel MHC class I-like gene
        161.  Cao H, Stamatoyannopoulos G, Jung M: Induction of human gamma   is mutated in patients with hereditary haemochromatosis. Nat Genet
            globin gene expression by histone deacetylase inhibitors. Blood 103:701,   13:399, 1996.
            2004.                                             186.  Roetto A, Camaschella C: New insights into iron homeostasis through
        162.  Constantoulakis P, Knitter G, Stamatoyannopoulos G: On the induc-  the study of non-HFE hereditary haemochromatosis. Best Pract Res Clin
            tion  of  fetal  hemoglobin  by  butyrates:  in  vivo  and  in  vitro  studies   Haematol 18:235, 2005.
            with sodium butyrate and comparison of combination treatments with   187.  Camaschella C, Roetto A, Cali A, et al: The gene TFR2 is mutated in
            5-AzaC and AraC. Blood 74:1963, 1989.                 a new type of haemochromatosis mapping to 7q22. Nat Genet 25:14,
        163.  Perrine SP, Miller BA, Faller DV, et al: Sodium butyrate enhances fetal   2000.
            globin gene expression in erythroid progenitors of patients with Hb SS   188.  Roetto  A,  Totaro  A,  Piperno  A,  et al:  New  mutations  inactivating
            and beta thalassemia. Blood 74:454, 1989.             transferrin receptor 2 in hemochromatosis type 3. Blood 97:2555, 2001.
        164.  Perrine SP, Ginder GD, Faller DV, et al: A short-term trial of butyrate   189.  Bach  V,  Remacha  A,  Altes  A,  et al:  Autosomal  dominant  hereditary
            to stimulate fetal-globin-gene expression in the beta-globin disorders.   hemochromatosis associated with two novel Ferroportin 1 mutations
            N Engl J Med 328:81, 1993.                            in Spain. Blood Cells Mol Dis 36:41, 2006.
        165.  Sher GD, Ginder GD, Little J, et al: Extended therapy with intravenous   190.  Iolascon  A,  d’Apolito  M,  Servedio  V,  et al:  Microcytic  anemia  and
            arginine butyrate in patients with beta-hemoglobinopathies. N Engl J   hepatic iron overload in a child with compound heterozygous muta-
            Med 332:1606, 1995.                                   tions in DMT1 (SCL11A2). Blood 107:349, 2006.
        166.  Bauer  DE,  Kamran  SC,  Orkin  SH:  Reawakening  fetal  hemoglobin:   191.  Fleming RE, Ahmann JR, Migas MC, et al: Targeted mutagenesis of
            prospects  for  new  therapies  for  the  beta-globin  disorders.  Blood   the murine transferrin receptor-2 gene produces hemochromatosis. Proc
            120:2945, 2012.                                       Natl Acad Sci USA 99:10653, 2002.
        167.  Kihm AJ, Kong Y, Hong W, et al: An abundant erythroid protein that   192.  Zhou XY, Tomatsu S, Fleming RE, et al: HFE gene knockout produces
            stabilizes free alpha-haemoglobin. Nature 417:758, 2002.  mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA
        168.  Feng  L,  Gell  DA,  Zhou  S,  et al:  Molecular  mechanism  of    95:2492, 1998.
            AHSP-mediated  stabilization  of  alpha-hemoglobin.  Cell  119:629,   193.  Huang FW, Pinkus JL, Pinkus GS, et al: A mouse model of juvenile
            2004.                                                 hemochromatosis. J Clin Invest 115:2187, 2005.
        169.  Zhou S, Olson JS, Fabian M, et al: Biochemical fates of alpha hemoglo-  194.  Lesbordes-Brion JC, Viatte L, Bennoun M, et al: Targeted disruption of
            bin bound to alpha hemoglobin-stabilizing protein AHSP. J Biol Chem   the hepcidin 1 gene results in severe hemochromatosis. Blood 108:1402,
            281:32611, 2006.                                      2006.
        170.  Kong Y, Zhou S, Kihm AJ, et al: Loss of alpha-hemoglobin-stabilizing   195.  Nicolas G, Andrews NC, Kahn A, et al: Hepcidin, a candidate modifier
            protein impairs erythropoiesis and exacerbates beta-thalassemia. J Clin   of the hemochromatosis phenotype in mice. Blood 103:2841, 2004.
            Invest 114:1457, 2004.                            196.  Ganz T: Hepcidin and its role in regulating systemic iron metabolism.
        171.  Viprakasit V, Tanphaichitr VS, Chinchang W, et al: Evaluation of alpha   Hematology Am Soc Hematol Educ Program 29–35, 2006.
            hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients   197.  Hall MA, Curtis DJ, Metcalf D, et al: The critical regulator of embry-
            with beta thalassemia. Blood 103:3296, 2004.          onic  hematopoiesis,  SCL,  is  vital  in  the  adult  for  megakaryopoiesis,
        172.  Lai MI, Jiang J, Silver N, et al: Alpha-haemoglobin stabilising protein   erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci USA
            is  a  quantitative  trait  gene  that  modifies  the  phenotype  of  beta-  100:992, 2003.
            thalassaemia. Br J Haematol 133:675, 2006.        198.  Chen K, Liu J, Heck S, et al: Resolving the distinct stages in erythroid
        173.  Sawada K, Krantz SB, Kans JS, et al: Purification of human erythroid   differentiation  based  on  dynamic  changes  in  membrane  protein
            colony-forming units and demonstration of specific binding of eryth-  expression during erythropoiesis. Proc Natl Acad Sci USA 106:17413,
            ropoietin. J Clin Invest 80:357, 1987.                2009.
   383   384   385   386   387   388   389   390   391   392   393