Page 388 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 388
320.e4 Part IV Disorders of Hematopoietic Cell Development
151. Chasis JA, Coulombel L, McGee S, et al: Differential use of protein 174. Iacopetta BJ, Morgan EH, Yeoh GC: Transferrin receptors and iron
4.1 translation initiation sites during erythropoiesis: implications for uptake during erythroid cell development. Biochim Biophys Acta
a mutation-induced stage-specific deficiency of protein 4.1 during 687:204, 1982.
erythroid development. Blood 87:5324, 1996. 175. Seligman P, Klausner R, Huebers H: Molecular mechanisms of iron
152. Satchwell TJ, Bell AJ, Pellegrin S, et al: Critical band 3 multiprotein metabolism. In Stamatoyannopoulos G, Nienhuis AW, editors: Molecu-
complex interactions establish early during human erythropoiesis. Blood lar basis of blood diseases, Philadelphia, PA, 1987, WB Saunders, p 219.
118:182, 2011. 176. Huebers HA, Finch CA: The physiology of transferrin and transferrin
153. Birkenmeier CS, Barker JE: Hereditary haemolytic anaemias: unex- receptors. Physiol Rev 67:520, 1987.
pected sequelae of mutations in the genes for erythroid membrane 177. Kawabata H, Yang R, Hirama T, et al: Molecular cloning of transferrin
skeletal proteins. J Pathol 204:450, 2004. receptor 2. A new member of the transferrin receptor-like family. J Biol
154. Nienhuis AW, Benz EJ, Jr: Regulation of hemoglobin synthesis during Chem 274:20826, 1999.
the development of the red cell (first of three parts). N Engl J Med 178. Lambert LA, Mitchell SL: Molecular evolution of the transferrin
m297:1318, 1977. receptor/glutamate carboxypeptidase II family. J Mol Evol 64:113,
155. Stamatoyannopoulos G, Nienhuis AW: Hemoglobin switching. In 2007.
Stamatoyannopoulos G, Nienhuis AW, editors: Molecular Basis of Blood 179. Keel SB, Doty R, Liu L, et al: Evidence that the expression of transferrin
Diseases, Philadelphia, PA, 1987, WB Saunders. receptor 1 on erythroid marrow cells mediates hepcidin suppression in
156. Papayannopoulou T, Brice M, Stamatoyannopoulos G: Hemoglobin F the liver. Exp Hematol 43:469–478, 2015.
synthesis in vitro: evidence for control at the level of primitive erythroid 180. Wallace DF, Summerville L, Subramaniam VN: Targeted disruption of
stem cells. Proc Natl Acad Sci USA 74:2923, 1977. the hepatic transferrin receptor 2 gene in mice leads to iron overload.
157. Blau CA, Constantoulakis P, al-Khatti A, et al: Fetal hemoglobin Gastroenterology 132:301, 2007.
in acute and chronic states of erythroid expansion. Blood 81:227, 181. Nakamaki T, Kawabata H, Saito B, et al: Elevated levels of transferrin
1993. receptor 2 mRNA, not transferrin receptor 1 mRNA, are associated
158. Papayannopoulou T, Vichinsky E, Stamatoyannopoulos G: Fetal Hb with increased survival in acute myeloid leukaemia. Br J Haematol
production during acute erythroid expansion. I. Observations in 125:42, 2004.
patients with transient erythroblastopenia and post-phlebotomy. Br J 182. Nai A, Lidonnici MR, Rausa M, et al: The second transferrin receptor
Haematol 44:535, 1980. regulates red blood cell production in mice. Blood 125:1170, 2015.
159. Mabaera R, West RJ, Conine SJ, et al: A cell stress signaling model of 183. Robb A, Wessling-Resnick M: Regulation of transferrin receptor 2
fetal hemoglobin induction: what doesn’t kill red blood cells may make protein levels by transferrin. Blood 104:4294, 2004.
them stronger. Exp Hematol 36:1057, 2008. 184. Vaulont S, Lou DQ, Viatte L, et al: Of mice and men: the iron age. J
160. Cao H: Pharmacological induction of fetal hemoglobin synthesis using Clin Invest 115:2079, 2005.
histone deacetylase inhibitors. Hematology 9:223, 2004. 185. Feder JN, Gnirke A, Thomas W, et al: A novel MHC class I-like gene
161. Cao H, Stamatoyannopoulos G, Jung M: Induction of human gamma is mutated in patients with hereditary haemochromatosis. Nat Genet
globin gene expression by histone deacetylase inhibitors. Blood 103:701, 13:399, 1996.
2004. 186. Roetto A, Camaschella C: New insights into iron homeostasis through
162. Constantoulakis P, Knitter G, Stamatoyannopoulos G: On the induc- the study of non-HFE hereditary haemochromatosis. Best Pract Res Clin
tion of fetal hemoglobin by butyrates: in vivo and in vitro studies Haematol 18:235, 2005.
with sodium butyrate and comparison of combination treatments with 187. Camaschella C, Roetto A, Cali A, et al: The gene TFR2 is mutated in
5-AzaC and AraC. Blood 74:1963, 1989. a new type of haemochromatosis mapping to 7q22. Nat Genet 25:14,
163. Perrine SP, Miller BA, Faller DV, et al: Sodium butyrate enhances fetal 2000.
globin gene expression in erythroid progenitors of patients with Hb SS 188. Roetto A, Totaro A, Piperno A, et al: New mutations inactivating
and beta thalassemia. Blood 74:454, 1989. transferrin receptor 2 in hemochromatosis type 3. Blood 97:2555, 2001.
164. Perrine SP, Ginder GD, Faller DV, et al: A short-term trial of butyrate 189. Bach V, Remacha A, Altes A, et al: Autosomal dominant hereditary
to stimulate fetal-globin-gene expression in the beta-globin disorders. hemochromatosis associated with two novel Ferroportin 1 mutations
N Engl J Med 328:81, 1993. in Spain. Blood Cells Mol Dis 36:41, 2006.
165. Sher GD, Ginder GD, Little J, et al: Extended therapy with intravenous 190. Iolascon A, d’Apolito M, Servedio V, et al: Microcytic anemia and
arginine butyrate in patients with beta-hemoglobinopathies. N Engl J hepatic iron overload in a child with compound heterozygous muta-
Med 332:1606, 1995. tions in DMT1 (SCL11A2). Blood 107:349, 2006.
166. Bauer DE, Kamran SC, Orkin SH: Reawakening fetal hemoglobin: 191. Fleming RE, Ahmann JR, Migas MC, et al: Targeted mutagenesis of
prospects for new therapies for the beta-globin disorders. Blood the murine transferrin receptor-2 gene produces hemochromatosis. Proc
120:2945, 2012. Natl Acad Sci USA 99:10653, 2002.
167. Kihm AJ, Kong Y, Hong W, et al: An abundant erythroid protein that 192. Zhou XY, Tomatsu S, Fleming RE, et al: HFE gene knockout produces
stabilizes free alpha-haemoglobin. Nature 417:758, 2002. mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA
168. Feng L, Gell DA, Zhou S, et al: Molecular mechanism of 95:2492, 1998.
AHSP-mediated stabilization of alpha-hemoglobin. Cell 119:629, 193. Huang FW, Pinkus JL, Pinkus GS, et al: A mouse model of juvenile
2004. hemochromatosis. J Clin Invest 115:2187, 2005.
169. Zhou S, Olson JS, Fabian M, et al: Biochemical fates of alpha hemoglo- 194. Lesbordes-Brion JC, Viatte L, Bennoun M, et al: Targeted disruption of
bin bound to alpha hemoglobin-stabilizing protein AHSP. J Biol Chem the hepcidin 1 gene results in severe hemochromatosis. Blood 108:1402,
281:32611, 2006. 2006.
170. Kong Y, Zhou S, Kihm AJ, et al: Loss of alpha-hemoglobin-stabilizing 195. Nicolas G, Andrews NC, Kahn A, et al: Hepcidin, a candidate modifier
protein impairs erythropoiesis and exacerbates beta-thalassemia. J Clin of the hemochromatosis phenotype in mice. Blood 103:2841, 2004.
Invest 114:1457, 2004. 196. Ganz T: Hepcidin and its role in regulating systemic iron metabolism.
171. Viprakasit V, Tanphaichitr VS, Chinchang W, et al: Evaluation of alpha Hematology Am Soc Hematol Educ Program 29–35, 2006.
hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients 197. Hall MA, Curtis DJ, Metcalf D, et al: The critical regulator of embry-
with beta thalassemia. Blood 103:3296, 2004. onic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis,
172. Lai MI, Jiang J, Silver N, et al: Alpha-haemoglobin stabilising protein erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci USA
is a quantitative trait gene that modifies the phenotype of beta- 100:992, 2003.
thalassaemia. Br J Haematol 133:675, 2006. 198. Chen K, Liu J, Heck S, et al: Resolving the distinct stages in erythroid
173. Sawada K, Krantz SB, Kans JS, et al: Purification of human erythroid differentiation based on dynamic changes in membrane protein
colony-forming units and demonstration of specific binding of eryth- expression during erythropoiesis. Proc Natl Acad Sci USA 106:17413,
ropoietin. J Clin Invest 80:357, 1987. 2009.

