Page 105 - Williams Hematology ( PDFDrive )
P. 105

80  Part II:  The Organization of the Lymphohematopoietic Tissues  Chapter 5:  Structure of the Marrow and the Hematopoietic Microenvironment  81




                    354. Nilsson SK, Johnston HM, Whitty GA, et al: Osteopontin, a key component of the     387. Hitchcock IS, Kaushansky K: Thrombopoietin from beginning to end. Br J Haematol
                     hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor   165:259, 2014.
                     cells. Blood 106:1232, 2005.                         388. Scheding S, Bergmann M, Shimosaka A, et al: Human plasma thrombopoietin lev-
                    355. Stier S, Ko Y, Forkert R, et al: Osteopontin is a hematopoietic stem cell niche compo-  els are regulated by binding to platelet thrombopoietin receptors in vivo. Transfusion
                     nent that negatively regulates stem cell pool size. J Exp Med 201:1781, 2005.  42:321, 2002.
                    356. Grassinger J, Haylock DN, Storan MJ, et al: Thrombin-cleaved osteopontin regulates     389. Machlus KR, Italiano JE Jr: The incredible journey: From megakaryocyte development
                     hemopoietic stem and progenitor cell functions through interactions with alpha9beta1   to platelet formation. J Cell Biol 201:785, 2013.
                     and alpha4beta1 integrins. Blood 114:49, 2009.       390. Lordier L, Bluteau D, Jalil A, et al: RUNX1-induced silencing of non-muscle myosin
                    357. Kang JA, Zhou Y, Weis TL, et al: Osteopontin regulates actin cytoskeleton and contrib-  heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun 3:717,
                     utes to cell proliferation in primary erythroblasts. J Biol Chem 283:6997, 2008.  2012.
                    358. Chung JW, Kim MS, Piao ZH, et al: Osteopontin promotes the development of natural     391. Lichtman  MA,  Chamberlain  JK,  Simon  W,  Santillo  PA:  Parasinusoidal  location  of
                     killer cells from hematopoietic stem cells. Stem Cells 26:2114, 2008.  megakaryocytes in marrow: A determinant of platelet release. Am J Hematol 4:303,
                    359. Diao H, Iwabuchi K, Li L, et al: Osteopontin regulates development and function of   1978.
                     invariant natural killer T cells. Proc Natl Acad Sci U S A 105:15884, 2008.    392. Wu Y,  Welte T, Michaud M, Madri  JA: PECAM-1:  A multifaceted  regulator  of
                    360. Gu YC, Nilsson K, Eng H, Ekblom M: Association of extracellular matrix proteins fib-  megakaryocytopoiesis. Blood 110:851, 2007.
                     ulin-1 and fibulin-2 with fibronectin in bone marrow stroma. Br J Haematol 109:305,     393. Dhanjal TS, Pendaries C, Ross EA, et al: A novel role for PECAM-1 in megakaryocy-
                     2000.                                                 tokinesis and recovery of platelet counts in thrombocytopenic mice. Blood 109:4237,
                    361. Hergeth SP, Aicher WK, Essl M, et al: Characterization and functional analysis of   2007.
                     osteoblast-derived fibulins in the human hematopoietic stem cell niche. Exp Hematol     394. Pitchford SC, Lodie T, Rankin SM: VEGFR1 stimulates a CXCR4-dependent translo-
                     36:1022, 2008.                                        cation of megakaryocytes to the vascular niche, enhancing platelet production in mice.
                    362. Mancini E, Sanjuan-Pla A, Luciani L, et al: FOG-1 and GATA-1 act sequentially to   Blood 120:2787, 2012.
                     specify definitive megakaryocytic and erythroid progenitors. EMBO J 31:351, 2012.    395. Schachtner H, Calaminus SD, Sinclair A, et al: Megakaryocytes assemble podosomes
                    363. Siatecka M, Bieker JJ: The multifunctional role of EKLF/KLF1 during erythropoiesis.   that degrade matrix and protrude through basement membrane. Blood 121:2542, 2013.
                     Blood 118:2044, 2011.                                396. Lambertsen RH, Weiss L: A model of intramedullary hematopoietic microenviron-
                    364. Gregory CJ, Eaves AC: Human marrow cells capable of erythropoietic differentiation in   ments based on stereologic study of the distribution of endocloned marrow colonies.
                     vitro: Definition of three erythroid colony responses. Blood 49:855, 1977.  Blood 63:287, 1984.
                    365. Porcu S, Manchinu MF, Marongiu MF, et al: Klf1 affects DNase II-alpha expression in     397. Rosenbauer F, Tenen DG: Transcription factors in myeloid development: Balancing dif-
                     the central macrophage of a fetal liver erythroblastic island: A non-cell-autonomous   ferentiation with transformation. Nat Rev Immunol 7:105, 2007.
                     role in definitive erythropoiesis. Mol Cell Biol 31:4144, 2011.    398. Rosmarin AG, Yang Z, Resendes KK: Transcriptional regulation in myelopoiesis:
                    366. Xue L, Galdass M, Gnanapragasam MN, et al: Extrinsic and intrinsic control by EKLF   Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol
                     (KLF1) within a specialized erythroid niche. Development 141:2245, 2014.  33:131, 2005.
                    367. Socolovsky M, Nam H, Fleming MD, et al: Ineffective erythropoiesis in Sta-    399. Iwasaki H, Akashi K: Myeloid lineage commitment from the hematopoietic stem cell.
                     t5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood 98:3261,   Immunity 26:726, 2007.
                     2001.                                                400. Hock H, Orkin SH: Zinc-finger transcription factor Gfi-1 Versatile regulator of lym-
                    368. Chen K, Liu J, Heck S, et al: Resolving the distinct stages in erythroid differentiation   phocytes, neutrophils and hematopoietic stem cells. Curr Opin Hematol 13.1:1, 2006.
                     based  on  dynamic  changes  in  membrane  protein  expression  during  erythropoiesis.     401. Friedman AD: Transcriptional control of granulocyte and monocyte development.
                     Proc Natl Acad Sci U S A 106:17413, 2009.             Oncogene 26:6816, 2007.
                    369. Hu J, Liu J, Xue F, et al: Isolation and functional characterization of human erythrob-    402. Mori Y, Iwasaki H, Kohno K, et al: Identification of the human eosinophil lineage-com-
                     lasts at distinct stages: Implications for understanding of normal and disordered ery-  mitted progenitor: Revision of phenotypic definition of the human common myeloid
                     thropoiesis in vivo. Blood 121:3246, 2013.            progenitor. J Exp Med 206:183, 2009.
                    370. Koury MJ: Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood     403. Rosenberg HF, Phipps S, Foster PS: Eosinophil trafficking in allergy and asthma.  J
                     Rev 28:49, 2014.                                      Allergy Clin Immunol 119:1303, 2007.
                    371. Panzenbock B, Bartunek P, Mapara MY, Zenke M: Growth and differentiation of     404. Christopher MJ, Link DC: Regulation of neutrophil homeostasis. Curr Opin Hematol
                     human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro.   14:3, 2007.
                     Blood 92:3658, 1998.                                 405. Furze RC, Rankin SM: Neutrophil mobilization and clearance in the bone marrow.
                    372. Bauer A, Tronche F, Wessely O, et al: The glucocorticoid receptor is required for stress   Immunology 125:281, 2008.
                     erythropoiesis. Genes Dev 13:2996, 1999.             406. Stark MA, Huo Y, Burcin TL, et al: Phagocytosis of apoptotic neutrophils regulates
                    373. Millot S, Andrieu V, Letteron P, et al: Erythropoietin stimulates spleen BMP4-depen-  granulopoiesis via IL-23 and IL-17. Immunity 22:285, 2005.
                     dent stress erythropoiesis and partially corrects anemia in a mouse model of general-    407. Wright DE, Wagers AJ, Gulati AP, et al: Physiological migration of hematopoietic stem
                     ized inflammation. Blood 116:6072, 2010.              and progenitor cells. Science 294:1933, 2001.
                    374. Rubiolo C, Piazzolla D, Meissl K, et al: A balance between Raf-1 and Fas expression sets     408. Abkowitz JL, Robinson AE, Kale S, et al: Mobilization of hematopoietic stem cells dur-
                     the pace of erythroid differentiation. Blood 108:152, 2006.  ing homeostasis and after cytokine exposure. Blood 102:1249, 2003.
                    375. Liu Y, Pop R, Sadegh C, et al: Suppression of Fas-FasL coexpression by erythropoie-    409. Massberg S, Schaerli P, Knezevic-Maramica I, et al: Immunosurveillance by hemato-
                     tin mediates erythroblast expansion during the erythropoietic stress response in vivo.   poietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell
                     Blood 108:123, 2006.                                  131:994, 2007.
                    376. De Maria R, Testa U, Luchetti L, et al: Apoptotic role of Fas/Fas ligand system in the     410. Kerst JM, Sanders JB, Slaper-Cortenbach IC, et al: Alpha 4 beta 1 and alpha 5 beta 1
                     regulation of erythropoiesis. Blood 93:796, 1999.     are differentially expressed during myelopoiesis and mediate the adherence of human
                    377. Koulnis M, Porpiglia E, Porpiglia PA, et al: Contrasting dynamic responses in vivo of   CD34+ cells to fibronectin in an activation-dependent way. Blood 81:344, 1993.
                     the Bcl-xL and Bim erythropoietic survival pathways. Blood 119:1228, 2012.    411. Hynes RO: Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11,
                    378. Rhodes MM, Kopsombut P, Bondurant MC, et al: Adherence to macrophages in ery-  1992.
                     throblastic islands enhances erythroblast proliferation and increases erythrocyte pro-    412. Hynes RO: Integrins: Bidirectional, allosteric signaling machines. Cell 110:673, 2002.
                     duction by a different mechanism than erythropoietin. Blood 111:1700, 2008.    413. Naito K, Tamahashi N, Chiba T, et al: The microvasculature of the human bone mar-
                    379. Popova EY, Krauss SW, Short SA, et al: Chromatin condensation in terminally differen-  row correlated with the distribution of hematopoietic cells. A computer-assisted three-
                     tiating mouse erythroblasts does not involve special architectural proteins but depends   dimensional reconstruction study. Tohoku J Exp Med 166:439, 1992.
                     on histone deacetylation. Chromosome Res 17:47, 2009.    414. Driessen RL, Johnston HM, Nilsson SK: Membrane-bound stem cell factor is a key
                    380. Shin JW, Spinler KR, Swift J, et al: Lamins regulate cell trafficking and lineage matura-  regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp
                     tion of adult human hematopoietic cells. Proc Natl Acad Sci U S A 110:18892, 2013.  Hematol 31:1284, 2003.
                    381. Koury ST, Koury MJ, Bondurant MC: Cytoskeletal distribution and function during the     415. Ihanus E, Uotila LM, Toivanen A, et al: Red-cell ICAM-4 is a ligand for the monocyte/
                     maturation and enucleation of mammalian erythroblasts. J Cell Biol 109:3005, 1989.  macrophage integrin CD11c/CD18: Characterization of the binding sites on ICAM-4.
                    382. Ubukawa K, Guo YM, Takahashi M, et al: Enucleation of human erythroblasts involves   Blood 109:802, 2007.
                     non-muscle myosin IIB. Blood 119:1036, 2012.         416. Kishimoto TK, Baldwin ET, Anderson DC: The role of β  integrins in inflammation,  in
                                                                                                          2
                    383. Lichtman MA, Waugh RE: Red cell egress from the marrow: Ultrastructural and bio-  Inflammation Basic Principles and Clinical Correlates, 3rd ed, edited by JI Gallin, R Sny-
                     physical aspects,  in Regulation of Erythropoiesis edited by ED Zanajni, M Tavassoli, J   derman, DT Fearon, BF Haynes, C Nathan, p 537. Lippincott, Williams and Wilkins,
                     Ascencao, p 15. PMA Literary and Film Management, Great Neck, NY, 1989.  Philadelphia, 1999.
                    384. Yoshida H, Kawane K, Koike M, et al: Phosphatidylserine-dependent engulfment by     417. Lasky LA: Selectin-carbohydrate interactions and the initiation of the inflammatory
                     macrophages of nuclei from erythroid precursor cells. Nature 437:754, 2005.  response. Annu Rev Biochem 64:113, 1995.
                    385. Kawane K, Fukuyama H, Kondoh G, et al: Requirement of DNase II for definitive ery-    418. Takada Y, Ye X, Simon S: The integrins. Genome Biol 8:215, 2007.
                     thropoiesis in the mouse fetal liver. Science 292:1546, 2001.    419. Eshghi S, Vogelezang MG, Hynes RO, et al: Alpha4beta1 integrin and erythropoietin
                    386. Deutsch VR, Tomer A: Advances in megakaryocytopoiesis and thrombopoiesis: From   mediate temporally distinct steps in erythropoiesis: Integrins in red cell development. J
                     bench to bedside. Br J Haematol 161:778, 2013.        Cell Biol 177:871, 2007.






          Kaushansky_chapter 05_p0051-0084.indd   81                                                                    9/19/15   12:11 AM
   100   101   102   103   104   105   106   107   108   109   110