Page 101 - Williams Hematology ( PDFDrive )
P. 101

76  Part II:  The Organization of the Lymphohematopoietic Tissues  Chapter 5:  Structure of the Marrow and the Hematopoietic Microenvironment  77




                    95.  Sacchetti B, Funari A, Michienzi S, et al: Self-renewing osteoprogenitors in bone mar-    127. Weiss L, Chen LT: The organization of hemopoietic cords and vascular sinuses in bone
                     row sinusoids can organize a hematopoietic microenvironment. Cell 131:324, 2007.  marrow. Blood Cells 1:617, 1975.
                    96.  Serafini M, Sacchetti B, Pievani A, et al: Establishment of bone marrow and hematopoi-    128. Leblond PF, Chamberlain JK, Weed RI: Scanning electron microscopy of erythropoietin-
                     etic niches in vivo by reversion of chondrocyte differentiation of human bone marrow   stimulated bone marrow. Blood Cells 1:639, 1975.
                     stromal cells. Stem Cell Res 12:659, 2014.           129. Galmiche MC, Koteliansky VE, Brière J, et al: Stromal cells from human long-term
                    97.  Ehninger A, Trumpp A: The bone marrow stem cell niche grows up: Mesenchymal stem   marrow cultures are mesenchymal cells that differentiate following a vascular smooth
                     cells and macrophages move in. J Exp Med 208:421, 2011.  muscle differentiation pathway. Blood 82:66, 1993.
                    98.  Nombela-Arrieta C, Pivarnik G, Winkel B, et al: Quantitative imaging of haematopoi-    130. Dennis JE, Charbord P: Origin and differentiation of human and murine stroma. Stem
                     etic stem and progenitor cell localization and hypoxic status in the bone marrow micro-  Cells 20:205, 2002.
                     environment. Nat Cell Biol 15:533, 2013.             131. Weiss L, Geduldig U: Barrier cells: Stromal regulation of hematopoiesis and blood cell
                    99.  Winkler IG, Barbier V, Wadley R, et al: Positioning of bone marrow hematopoietic and   release in normal and stressed murine bone marrow. Blood 78:975, 1991.
                     stromal cells relative to blood flow in vivo: Serially reconstituting hematopoietic stem     132. Sugiyama T, Kohara H, Noda M, Nagasawa T: Maintenance of the hematopoietic stem
                     cells reside in distinct nonperfused niches. Blood 116:375, 2010.  cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches.
                    100. Spencer JA, Ferraro F, Roussakis E, et al: Direct measurement of local oxygen concen-  Immunity 25:977, 2006.
                     tration in the bone marrow of live animals. Nature 508:269, 2014.    133. Pinho S, Lacombe J, Hanoun M, et al: PDGFRalpha and CD51 mark human nestin+
                    101. Abboud CN, Liesveld JL, Lichtman MA: The architecture of marrow and its role in   sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell
                     hematopoietic cell lodgement,  in The Hematopoietic Microenvironment, edited by MW   expansion. J Exp Med 210:1351, 2013.
                     Long, MS Wicha, p 2. Johns Hopkins University Press, Baltimore, MD, 1993.    134. Greenbaum A, Hsu YM, Day RB, et al: CXCL12 in early mesenchymal progenitors is
                    102. Tavassoli M, Shaklai M: Absence of tight junctions in endothelium of marrow sinuses:   required for haematopoietic stem-cell maintenance. Nature 495:227, 2013.
                     Possible significance for marrow cell egress. Br J Haematol 41:303, 1979.    135. Omatsu Y, Sugiyama T, Kohara H, et al: The essential functions of adipo-osteogenic
                    103. Bankston PW, De Bruyn PP: The permeability to carbon of the sinusoidal lining cells of   progenitors as the hematopoietic stem and progenitor cell niche.  Immunity 33:387,
                     the embryonic rat liver and rat bone marrow. Am J Anat 141:281, 1974.  2010.
                    104. Lichtman MA, Packman CH, Constine LS: Molecular and cellular traffic across the     136. Omatsu Y, Seike M, Sugiyama T, et al: Foxc1 is a critical regulator of haematopoietic
                     marrow sinuses,   in  Handbook of the Hemopoietic Microenvironment, edited by M   stem/progenitor cell niche formation. Nature 508:536, 2014.
                     Tavassoli, p 87. Humana Press, Clifton, NJ, 1989.    137. Nagasawa T, Omatsu Y, Sugiyama T: Control of hematopoietic stem cells by the bone
                    105. Hasthorpe S, Bogdanovski M, Rogerson J, Radley JM: Characterization of endothelial   marrow stromal niche: The role of reticular cells. Trends Immunol 32:315, 2011.
                     cells in murine long-term marrow culture. Implication for hemopoietic regulation. Exp     138. Mendez-Ferrer S, Michurina TV, Ferraro F, et al: Mesenchymal and haematopoietic
                     Hematol 20:476, 1992.                                 stem cells form a unique bone marrow niche. Nature 466:829, 2010.
                    106. Perkins S, Fleischman RA: Stromal cell progeny of murine bone marrow fibroblast       139. Afan AM, Broome CS, Nicholls SE, et al: Bone marrow innervation regulates cellular
                     colony-forming units are clonal endothelial-like cells that express collagen IV and lami-  retention in the murine haemopoietic system. Br J Haematol 98:569, 1997.
                     nin. Blood 75:620, 1990.                             140. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS: Haematopoietic stem cell release is
                    107. van Buul JD, Mul FPJ, van der Schoot CE, Hordijk PL: ICAM-3 activation modulates   regulated by circadian oscillations. Nature 452:442, 2008.
                     cell-cell contacts of human bone marrow endothelial cells. J Vasc Res 41:28, 2004.    141. Katayama Y, Battista M, Kao W-M, et al: Signals from the sympathetic nervous system
                    108. Schweitzer KM, Dräger AM, van der Valk P, et al: Constitutive expression of E-selectin   regulate hematopoietic stem cell egress from bone marrow. Cell 124:407, 2006.
                     and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am     142. Yamazaki S, Ema H, Karlsson G, et al: Nonmyelinating Schwann cells maintain hemato-
                     J Pathol 148:165, 1996.                               poietic stem cell hibernation in the bone marrow niche. Cell 147:1146, 2011.
                    109. Winkler IG, Barbier V, Nowlan B, et al: Vascular niche E-selectin regulates hematopoi-    143. Tavassoli M: Fatty evolution of marrow and the role of adipose tissue in hematopoie-
                     etic stem cell dormancy, self renewal and chemoresistance. Nat Med 18:1651, 2012.  sis,  in Handbook of the Hemopoietic Microenvironment, edited by M Tavassoli, p 157.
                    110. Kataoka M, Tavassoli M: Identification of lectin-like substances recognizing galactosyl   Humana Press, Clifton, NJ, 1989.
                     residues of glycoconjugates on the plasma membrane of marrow sinus endothelium.     144. Sadie-Van Gijsen H, Hough FS, Ferris WF: Determinants of bone marrow adiposity:
                     Blood 65:1163, 1985.                                  The modulation of peroxisome proliferator-activated receptor-gamma2 activity as a
                    111. Yao L, Yokota T, Xia L, et al: Bone marrow dysfunction in mice lacking the cytokine   central mechanism. Bone 56:255, 2013.
                     receptor gp130 in endothelial cells. Blood 106:4093, 2005.    145. Nuttall ME, Shah F, Singh V, et al: Adipocytes and the regulation of bone remodeling: A
                    112. Guillotin B, Bourget C, Remy-Zolgadri M, et al: Human primary endothelial cells stim-  balancing act. Calcif Tissue Int 94:78, 2014.
                     ulate human osteoprogenitor cell differentiation. Cell Physiol Biochem 14:325, 2004.    146. Krings A, Rahman S, Huang S, et al: Bone marrow fat has brown adipose tissue charac-
                    113. Kobayashi H, Butler JM, O’Donnell R, et al: Angiocrine factors from Akt-activated   teristics, which are attenuated with aging and diabetes. Bone 50:546, 2012.
                     endothelial cells balance self-renewal and differentiation of haematopoietic stem cells.     147. Poloni A, Maurizi G, Serrani F, et al: Molecular and functional characterization of
                     Nat Cell Biol 12:1046, 2010.                          human bone marrow adipocytes. Exp Hematol 41:558, 2013.
                    114. Maes C: Role and regulation of vascularization processes in endochondral bones. Calcif     148. Corre J, Planat-Benard V, Corberand JX, et al: Human bone marrow adipocytes support
                     Tissue Int 92:307, 2013.                              complete myeloid and lymphoid differentiation from human CD34 cells. Br J Haematol
                    115. Ding L, Saunders TL, Enikolopov G, Morrison SJ: Endothelial and perivascular cells   127:344, 2004.
                     maintain haematopoietic stem cells. Nature 481:457, 2012.    149. Miller SC, de Saint-Georges L, Bowman BM, Jee WS: Bone lining cells: Structure and
                    116. Zheng J, Huynh H, Umikawa M, et al: Angiopoietin-like protein 3 supports the activity   function. Scanning Microsc 3:953, 1989.
                     of hematopoietic stem cells in the bone marrow niche. Blood 117:470, 2011.    150. Bianco P: Bone and the hematopoietic niche: A tale of two stem cells. Blood 117:5281,
                    117. Mohle R, Salemi P, Moore MA, Rafii S: Expression of interleukin-5 by human bone   2011.
                     marrow microvascular endothelial cells: Implications for the regulation of eosinophilo-    151. Sillaber C, Walchshofer S, Mosberger I, et al: Immunophenotypic characterization of
                     poiesis in vivo. Br J Haematol 99:732, 1997.          human bone marrow endosteal cells. Tissue Antigens 53:559, 1999.
                    118. Huang WQ, Wang QR: Bone marrow endothelial cells secrete thymosin beta4 and AcS-    152. Long MW, Robinson JA, Ashcraft EA, Mann KG: Regulation of human bone
                     DKP. Exp Hematol 29:12, 2001.                         marrow-derived osteoprogenitor cells by osteogenic growth factors.  J Clin Invest
                    119. Bordenave L, Georges A, Bareille R, et al: Human bone marrow endothelial cells: A new   95:881, 1995.
                     identified source of B-type natriuretic peptide. Peptides 23:935, 2002.    153. Gronthos S, Zannettino AC, Graves SE, et al: Differential cell surface expression of the
                    120. van Buul JD, Voermans C, van den Berg V, et al: Migration of human hematopoietic   STRO-1 and alkaline phosphatase antigens on discrete developmental stages in pri-
                     progenitor cells across bone marrow endothelium is regulated by vascular endothelial   mary cultures of human bone cells. J Bone Miner Res 14:47, 1999.
                     cadherin. J Immunol 168:588, 2002.                   154. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B: Aging activates adipogenic and
                    121. Netelenbos T, van den Born J, Kessler FL, et al: In vitro model for hematopoietic pro-  suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of
                     genitor cell homing reveals endothelial heparan sulfate proteoglycans as direct adhesive   PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell
                     ligands. J Leukoc Biol 74:1035, 2003.                 3:379, 2004.
                    122. Netelenbos T, van den Born J, Kessler FL, et al: Proteoglycans on bone marrow endo-    155. Hanada K, Dennis JE, Caplan AI: Stimulatory effects of basic fibroblast growth fac-
                     thelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia   tor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone mar-
                     17:175, 2003.                                         row-derived mesenchymal stem cells. J Bone Miner Res 12:1606, 1997.
                    123. Hillyer P, Mordelet E, Flynn G, Male D: Chemokines, chemokine receptors and adhe-    156. Blanquaert F, Delany AM, Canalis E: Fibroblast growth factor-2 induces hepatocyte
                     sion molecules on different human endothelia: Discriminating the tissue-specific func-  growth factor/scatter factor expression in osteoblasts. Endocrinology 140:1069, 1999.
                     tions that affect leucocyte migration. Clin Exp Immunol 134:431, 2003.    157. Grano M, Galimi F, Zambonin G, et al: Hepatocyte growth factor is a coupling factor
                    124. Yun H-J, Jo D-Y: Production of stromal cell-derived factor-1 (SDF-1)and expression of   for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci U S A 93:7644, 1996.
                     CXCR4 in human bone marrow endothelial cells. J Korean Med Sci 18:679, 2003.    158. Yin JJ, Mohammad KS, Käkönen SM, et al: A causal role for endothelin-1 in the patho-
                    125. Imai T, Hieshima K, Haskell C, et al: Identification and molecular characterization of   genesis of osteoblastic bone metastases. Proc Natl Acad Sci U S A 100:10954, 2003.
                     fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion.     159. Erlebacher A, Filvaroff EH, Ye JQ, Derynck R: Osteoblastic responses to TGF-beta dur-
                     Cell 91:521, 1997.                                    ing bone remodeling. Mol Biol Cell 9:1903, 1998.
                    126. Nitschke L, Floyd H, Ferguson DJ, Crocker PR: Identification of CD22 ligands on bone     160. Nakashima K, Zhou X, Kunkel G, et al: The novel zinc finger-containing transcription
                     marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculat-  factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17,
                     ing B cells. J Exp Med 189:1513, 1999.                2002.





          Kaushansky_chapter 05_p0051-0084.indd   77                                                                    9/19/15   12:11 AM
   96   97   98   99   100   101   102   103   104   105   106