Page 101 - Williams Hematology ( PDFDrive )
P. 101
76 Part II: The Organization of the Lymphohematopoietic Tissues Chapter 5: Structure of the Marrow and the Hematopoietic Microenvironment 77
95. Sacchetti B, Funari A, Michienzi S, et al: Self-renewing osteoprogenitors in bone mar- 127. Weiss L, Chen LT: The organization of hemopoietic cords and vascular sinuses in bone
row sinusoids can organize a hematopoietic microenvironment. Cell 131:324, 2007. marrow. Blood Cells 1:617, 1975.
96. Serafini M, Sacchetti B, Pievani A, et al: Establishment of bone marrow and hematopoi- 128. Leblond PF, Chamberlain JK, Weed RI: Scanning electron microscopy of erythropoietin-
etic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stimulated bone marrow. Blood Cells 1:639, 1975.
stromal cells. Stem Cell Res 12:659, 2014. 129. Galmiche MC, Koteliansky VE, Brière J, et al: Stromal cells from human long-term
97. Ehninger A, Trumpp A: The bone marrow stem cell niche grows up: Mesenchymal stem marrow cultures are mesenchymal cells that differentiate following a vascular smooth
cells and macrophages move in. J Exp Med 208:421, 2011. muscle differentiation pathway. Blood 82:66, 1993.
98. Nombela-Arrieta C, Pivarnik G, Winkel B, et al: Quantitative imaging of haematopoi- 130. Dennis JE, Charbord P: Origin and differentiation of human and murine stroma. Stem
etic stem and progenitor cell localization and hypoxic status in the bone marrow micro- Cells 20:205, 2002.
environment. Nat Cell Biol 15:533, 2013. 131. Weiss L, Geduldig U: Barrier cells: Stromal regulation of hematopoiesis and blood cell
99. Winkler IG, Barbier V, Wadley R, et al: Positioning of bone marrow hematopoietic and release in normal and stressed murine bone marrow. Blood 78:975, 1991.
stromal cells relative to blood flow in vivo: Serially reconstituting hematopoietic stem 132. Sugiyama T, Kohara H, Noda M, Nagasawa T: Maintenance of the hematopoietic stem
cells reside in distinct nonperfused niches. Blood 116:375, 2010. cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches.
100. Spencer JA, Ferraro F, Roussakis E, et al: Direct measurement of local oxygen concen- Immunity 25:977, 2006.
tration in the bone marrow of live animals. Nature 508:269, 2014. 133. Pinho S, Lacombe J, Hanoun M, et al: PDGFRalpha and CD51 mark human nestin+
101. Abboud CN, Liesveld JL, Lichtman MA: The architecture of marrow and its role in sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell
hematopoietic cell lodgement, in The Hematopoietic Microenvironment, edited by MW expansion. J Exp Med 210:1351, 2013.
Long, MS Wicha, p 2. Johns Hopkins University Press, Baltimore, MD, 1993. 134. Greenbaum A, Hsu YM, Day RB, et al: CXCL12 in early mesenchymal progenitors is
102. Tavassoli M, Shaklai M: Absence of tight junctions in endothelium of marrow sinuses: required for haematopoietic stem-cell maintenance. Nature 495:227, 2013.
Possible significance for marrow cell egress. Br J Haematol 41:303, 1979. 135. Omatsu Y, Sugiyama T, Kohara H, et al: The essential functions of adipo-osteogenic
103. Bankston PW, De Bruyn PP: The permeability to carbon of the sinusoidal lining cells of progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387,
the embryonic rat liver and rat bone marrow. Am J Anat 141:281, 1974. 2010.
104. Lichtman MA, Packman CH, Constine LS: Molecular and cellular traffic across the 136. Omatsu Y, Seike M, Sugiyama T, et al: Foxc1 is a critical regulator of haematopoietic
marrow sinuses, in Handbook of the Hemopoietic Microenvironment, edited by M stem/progenitor cell niche formation. Nature 508:536, 2014.
Tavassoli, p 87. Humana Press, Clifton, NJ, 1989. 137. Nagasawa T, Omatsu Y, Sugiyama T: Control of hematopoietic stem cells by the bone
105. Hasthorpe S, Bogdanovski M, Rogerson J, Radley JM: Characterization of endothelial marrow stromal niche: The role of reticular cells. Trends Immunol 32:315, 2011.
cells in murine long-term marrow culture. Implication for hemopoietic regulation. Exp 138. Mendez-Ferrer S, Michurina TV, Ferraro F, et al: Mesenchymal and haematopoietic
Hematol 20:476, 1992. stem cells form a unique bone marrow niche. Nature 466:829, 2010.
106. Perkins S, Fleischman RA: Stromal cell progeny of murine bone marrow fibroblast 139. Afan AM, Broome CS, Nicholls SE, et al: Bone marrow innervation regulates cellular
colony-forming units are clonal endothelial-like cells that express collagen IV and lami- retention in the murine haemopoietic system. Br J Haematol 98:569, 1997.
nin. Blood 75:620, 1990. 140. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS: Haematopoietic stem cell release is
107. van Buul JD, Mul FPJ, van der Schoot CE, Hordijk PL: ICAM-3 activation modulates regulated by circadian oscillations. Nature 452:442, 2008.
cell-cell contacts of human bone marrow endothelial cells. J Vasc Res 41:28, 2004. 141. Katayama Y, Battista M, Kao W-M, et al: Signals from the sympathetic nervous system
108. Schweitzer KM, Dräger AM, van der Valk P, et al: Constitutive expression of E-selectin regulate hematopoietic stem cell egress from bone marrow. Cell 124:407, 2006.
and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am 142. Yamazaki S, Ema H, Karlsson G, et al: Nonmyelinating Schwann cells maintain hemato-
J Pathol 148:165, 1996. poietic stem cell hibernation in the bone marrow niche. Cell 147:1146, 2011.
109. Winkler IG, Barbier V, Nowlan B, et al: Vascular niche E-selectin regulates hematopoi- 143. Tavassoli M: Fatty evolution of marrow and the role of adipose tissue in hematopoie-
etic stem cell dormancy, self renewal and chemoresistance. Nat Med 18:1651, 2012. sis, in Handbook of the Hemopoietic Microenvironment, edited by M Tavassoli, p 157.
110. Kataoka M, Tavassoli M: Identification of lectin-like substances recognizing galactosyl Humana Press, Clifton, NJ, 1989.
residues of glycoconjugates on the plasma membrane of marrow sinus endothelium. 144. Sadie-Van Gijsen H, Hough FS, Ferris WF: Determinants of bone marrow adiposity:
Blood 65:1163, 1985. The modulation of peroxisome proliferator-activated receptor-gamma2 activity as a
111. Yao L, Yokota T, Xia L, et al: Bone marrow dysfunction in mice lacking the cytokine central mechanism. Bone 56:255, 2013.
receptor gp130 in endothelial cells. Blood 106:4093, 2005. 145. Nuttall ME, Shah F, Singh V, et al: Adipocytes and the regulation of bone remodeling: A
112. Guillotin B, Bourget C, Remy-Zolgadri M, et al: Human primary endothelial cells stim- balancing act. Calcif Tissue Int 94:78, 2014.
ulate human osteoprogenitor cell differentiation. Cell Physiol Biochem 14:325, 2004. 146. Krings A, Rahman S, Huang S, et al: Bone marrow fat has brown adipose tissue charac-
113. Kobayashi H, Butler JM, O’Donnell R, et al: Angiocrine factors from Akt-activated teristics, which are attenuated with aging and diabetes. Bone 50:546, 2012.
endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. 147. Poloni A, Maurizi G, Serrani F, et al: Molecular and functional characterization of
Nat Cell Biol 12:1046, 2010. human bone marrow adipocytes. Exp Hematol 41:558, 2013.
114. Maes C: Role and regulation of vascularization processes in endochondral bones. Calcif 148. Corre J, Planat-Benard V, Corberand JX, et al: Human bone marrow adipocytes support
Tissue Int 92:307, 2013. complete myeloid and lymphoid differentiation from human CD34 cells. Br J Haematol
115. Ding L, Saunders TL, Enikolopov G, Morrison SJ: Endothelial and perivascular cells 127:344, 2004.
maintain haematopoietic stem cells. Nature 481:457, 2012. 149. Miller SC, de Saint-Georges L, Bowman BM, Jee WS: Bone lining cells: Structure and
116. Zheng J, Huynh H, Umikawa M, et al: Angiopoietin-like protein 3 supports the activity function. Scanning Microsc 3:953, 1989.
of hematopoietic stem cells in the bone marrow niche. Blood 117:470, 2011. 150. Bianco P: Bone and the hematopoietic niche: A tale of two stem cells. Blood 117:5281,
117. Mohle R, Salemi P, Moore MA, Rafii S: Expression of interleukin-5 by human bone 2011.
marrow microvascular endothelial cells: Implications for the regulation of eosinophilo- 151. Sillaber C, Walchshofer S, Mosberger I, et al: Immunophenotypic characterization of
poiesis in vivo. Br J Haematol 99:732, 1997. human bone marrow endosteal cells. Tissue Antigens 53:559, 1999.
118. Huang WQ, Wang QR: Bone marrow endothelial cells secrete thymosin beta4 and AcS- 152. Long MW, Robinson JA, Ashcraft EA, Mann KG: Regulation of human bone
DKP. Exp Hematol 29:12, 2001. marrow-derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest
119. Bordenave L, Georges A, Bareille R, et al: Human bone marrow endothelial cells: A new 95:881, 1995.
identified source of B-type natriuretic peptide. Peptides 23:935, 2002. 153. Gronthos S, Zannettino AC, Graves SE, et al: Differential cell surface expression of the
120. van Buul JD, Voermans C, van den Berg V, et al: Migration of human hematopoietic STRO-1 and alkaline phosphatase antigens on discrete developmental stages in pri-
progenitor cells across bone marrow endothelium is regulated by vascular endothelial mary cultures of human bone cells. J Bone Miner Res 14:47, 1999.
cadherin. J Immunol 168:588, 2002. 154. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B: Aging activates adipogenic and
121. Netelenbos T, van den Born J, Kessler FL, et al: In vitro model for hematopoietic pro- suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of
genitor cell homing reveals endothelial heparan sulfate proteoglycans as direct adhesive PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell
ligands. J Leukoc Biol 74:1035, 2003. 3:379, 2004.
122. Netelenbos T, van den Born J, Kessler FL, et al: Proteoglycans on bone marrow endo- 155. Hanada K, Dennis JE, Caplan AI: Stimulatory effects of basic fibroblast growth fac-
thelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia tor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone mar-
17:175, 2003. row-derived mesenchymal stem cells. J Bone Miner Res 12:1606, 1997.
123. Hillyer P, Mordelet E, Flynn G, Male D: Chemokines, chemokine receptors and adhe- 156. Blanquaert F, Delany AM, Canalis E: Fibroblast growth factor-2 induces hepatocyte
sion molecules on different human endothelia: Discriminating the tissue-specific func- growth factor/scatter factor expression in osteoblasts. Endocrinology 140:1069, 1999.
tions that affect leucocyte migration. Clin Exp Immunol 134:431, 2003. 157. Grano M, Galimi F, Zambonin G, et al: Hepatocyte growth factor is a coupling factor
124. Yun H-J, Jo D-Y: Production of stromal cell-derived factor-1 (SDF-1)and expression of for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci U S A 93:7644, 1996.
CXCR4 in human bone marrow endothelial cells. J Korean Med Sci 18:679, 2003. 158. Yin JJ, Mohammad KS, Käkönen SM, et al: A causal role for endothelin-1 in the patho-
125. Imai T, Hieshima K, Haskell C, et al: Identification and molecular characterization of genesis of osteoblastic bone metastases. Proc Natl Acad Sci U S A 100:10954, 2003.
fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. 159. Erlebacher A, Filvaroff EH, Ye JQ, Derynck R: Osteoblastic responses to TGF-beta dur-
Cell 91:521, 1997. ing bone remodeling. Mol Biol Cell 9:1903, 1998.
126. Nitschke L, Floyd H, Ferguson DJ, Crocker PR: Identification of CD22 ligands on bone 160. Nakashima K, Zhou X, Kunkel G, et al: The novel zinc finger-containing transcription
marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculat- factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17,
ing B cells. J Exp Med 189:1513, 1999. 2002.
Kaushansky_chapter 05_p0051-0084.indd 77 9/19/15 12:11 AM

