Page 1258 - Williams Hematology ( PDFDrive )
P. 1258

1232  Part IX:  Lymphocytes and Plasma Cells                       Chapter 80:  Immunodeficiency Diseases            1233




                    41.  Glanzman ERP: Essentielle lymphocytophtise. Ein neues Krankheitsbild aus der     72.  Muller SM, Ege M, Pottharst A, et al: Transplacentally acquired maternal T lymphocytes
                     Sauglingspathologie. Ann Paediatr 175, 1950.          in severe combined immunodeficiency: A study of 121 patients. Blood 98:1847–1851,
                    42.  Buckley RH: Molecular defects in human severe combined immunodeficiency and   2001.
                     approaches to immune reconstitution. Annu Rev Immunol 22:625–655, 2004.    73.  Palmer K, Green TD, Roberts JL, et al: Unusual clinical and immunologic manifesta-
                    43.  Fischer A, Le Deist F, Hacein-Bey-Abina S, et al: Severe combined immunodeficiency.   tions of transplacentally acquired maternal T cells in severe combined immunodefi-
                     A model disease for molecular immunology and therapy. Immunol Rev 203:98–109,   ciency. J Allergy Clin Immunol 120:423–428, 2007.
                     2005.                                                74.  Shearer WT, Dunn E, Notarangelo LD, et al: Establishing diagnostic criteria for severe
                    44.  Al-Herz W, Bousfiha A, Casanova JL, et al: Primary immunodeficiency diseases: An   combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: The
                     update on the classification from the international union of immunological societies   Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol
                     expert committee for primary immunodeficiency. Front Immunol 5:162, 2014.  133:1092–1098, 2014.
                    45.  Grunebaum E, Cohen A, Roifman CM: Recent advances in understanding and manag-    75.  Hirschhorn R: In vivo reversion to normal of inherited mutations in humans. J Med
                     ing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin   Genet 40:721–728, 2003.
                     Allergy Clin Immunol 13:630–638, 2013.               76.  Kwan A, Abraham RS, Currier R, et al: Newborn screening for severe combined immu-
                   46.  Cassani B, Mirolo M, Cattaneo F, et al: Altered intracellular and extracellular signaling   nodeficiency in 11 screening programs in the United States. JAMA 312:729–738, 2014.
                     leads to impaired T-cell functions in ADA-SCID patients.  Blood 111:4209–4219,     77.  Engel BC, Podsakoff GM, Ireland JL, et al: Prolonged pancytopenia in a gene ther-
                     2008.                                                 apy patient with ADA-deficient SCID and trisomy 8 mosaicism: A case report. Blood
                    47.  Cohen AGE, Arpaia E, Roifman CM: Immunodeficiency caused by purine nucleoside   109:503–506, 2007.
                     phosphorylase deficiency. Immunol Allergy Clin North Am 20 (1):143–159, 2000.    78.  Dror Y, Grunebaum E, Hitzler J, et al: Purine nucleoside phosphorylase deficiency asso-
                    48.  Small TN, Wall DA, Kurtzberg J, et al: Association of reticular dysgenesis (thymic alym-  ciated with a dysplastic marrow morphology. Pediatr Res 55:472–477, 2004.
                     phoplasia and congenital aleukocytosis) with bilateral sensorineural deafness. J Pediatr     79.  Buck D, Malivert L, de Chasseval R, et al: Cernunnos, a novel nonhomologous end-
                     135:387–389, 1999.                                    joining factor, is mutated in human immunodeficiency with microcephaly.  Cell
                    49.  Pannicke U, Honig M, Hess I, et al: Reticular dysgenesis (aleukocytosis) is caused by   124:287–299, 2006.
                     mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41:101–    80.  Faraci M, Lanino E, Micalizzi C, et al: Unrelated hematopoietic stem cell transplanta-
                     105, 2009.                                            tion for Cernunnos-XLF deficiency. Pediatr Transplant 13:785–789, 2009.
                    50.  Lagresle-Peyrou C, Six EM, Picard C, et al: Human adenylate kinase 2 deficiency causes     81.  Gruhn B, Seidel J, Zintl F, et al: Successful bone marrow transplantation in a patient
                     a profound hematopoietic defect associated with sensorineural deafness.  Nat Genet   with DNA ligase IV deficiency and bone marrow failure. Orphanet J Rare Dis 2:5, 2007.
                     41:106–111, 2009.                                    82.  Cossu F, Vulliamy TJ, Marrone A, et al: A novel DKC1 mutation, severe combined
                    51.  Rochman Y, Spolski R, Leonard WJ: New insights into the regulation of T cells by gam-  immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in an infant
                     ma(c) family cytokines. Nat Rev Immunol 9:480–490, 2009.  with Hoyeraal-Hreidarsson syndrome. Br J Haematol 119:765–768, 2002.
                    52.  Noguchi M, Yi H, Rosenblatt HM, et al: Interleukin-2 receptor gamma chain mutation     83.  Hitzig WH, Kenny AB: The role of vitamin B12 and its transport globulins in the pro-
                     results in X-linked severe combined immunodeficiency in humans. Cell 73:147–157,   duction of antibodies. Clin Exp Immunol 20:105–111, 1975.
                     1993.                                               84.  Wong SN, Low LC, Lau YL, et al: Immunodeficiency in methylmalonic acidaemia.
                    53.  Macchi P, Villa A, Giliani S, et al: Mutations of Jak-3 gene in patients with autosomal   J Paediatr Child Health 28:180–183, 1992.
                     severe combined immune deficiency (SCID). Nature 377:65–68, 1995.    85.  Gatti RA, Meuwissen HJ, Allen HD, et al: Immunological reconstitution of sex-linked
                    54.  Russell SM, Tayebi N, Nakajima H, et al: Mutation of Jak3 in a patient with SCID:   lymphopenic immunological deficiency. Lancet 2:1366–1369, 1968.
                     Essential role of Jak3 in lymphoid development. Science 270:797–800, 1995.    86.  Pai SY, Logan BR, Griffith LM, et al: Transplantation outcomes for severe combined
                    55.  Puel A, Ziegler SF, Buckley RH, et al: Defective IL7R expression in T(-)B(+)NK(+)   immunodeficiency, 2000–2009. N Engl J Med 371:434–446, 2014.
                     severe combined immunodeficiency. Nat Genet 20:394–397, 1998.    87.  Honig M, Albert MH, Schulz A, et al: Patients with adenosine deaminase deficiency
                    56.  Neven B, Leroy S, Decaluwe H, et al: Long-term outcome after hematopoietic stem cell   surviving after hematopoietic stem cell transplantation are at high risk of CNS compli-
                     transplantation of a single-center cohort of 90 patients with severe combined immuno-  cations. Blood 109:3595–3602, 2007.
                     deficiency. Blood 113:4114–4124, 2009.               88.  Titman P, Pink E, Skucek E, et al: Cognitive and behavioral abnormalities in children
                    57.  Moshous D, Callebaut I, de Chasseval R, et al: Artemis, a novel DNA double-strand   after hematopoietic stem cell transplantation for severe congenital immunodeficien-
                     break repair/V(D)J recombination protein, is mutated in human severe combined   cies. Blood 112:3907–3913, 2008.
                     immune deficiency. Cell 105:177–186, 2001.           89.  Schuetz C, Neven B, Dvorak CC, et al: SCID patients with ARTEMIS vs RAG deficien-
                    58.  van der Burg M, Ijspeert H, Verkaik NS, et al: A DNA-PKcs mutation in a radiosensitive   cies following HCT: Increased risk of late toxicity in ARTEMIS-deficient SCID. Blood
                     T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin   123:281–289, 2014.
                     Invest 119:91–98, 2009.                              90.  Aiuti A, Cattaneo F, Galimberti S, et al: Gene therapy for immunodeficiency due to
                    59.  Buck D, Moshous D, de Chasseval R, et al: Severe combined immunodeficiency and   adenosine deaminase deficiency. N Engl J Med 360:447–458, 2009.
                     microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol     91.  Gaspar HB, Cooray S, Gilmour KC, et al: Hematopoietic stem cell gene therapy for
                     36:224–235, 2006.                                     adenosine deaminase-deficient severe combined immunodeficiency leads to long-term
                    60.  van  der  Burg  M,  van  Veelen  LR,  Verkaik  NS,  et  al:  A  new  type  of  radiosensitive   immunological recovery and metabolic correction. Sci Transl Med 3:97ra80, 2011.
                     T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest     92.  Candotti F, Shaw KL, Muul L, et al: Gene therapy for adenosine deaminase-deficient
                     116:137–145, 2006.                                    severe combined immune deficiency: Clinical comparison of retroviral vectors and
                    61.  Ahnesorg P, Smith P, Jackson SP: XLF interacts with the XRCC4-DNA ligase IV com-  treatment plans. Blood 120:3635–3646, 2012.
                     plex to promote DNA nonhomologous end-joining. Cell 124:301–313, 2006.    93.  Hacein-Bey-Abina S, Hauer J, Lim A, et al: Efficacy of gene therapy for X-linked severe
                    62.  Dadi HK, Simon AJ, Roifman CM: Effect of CD3delta deficiency on maturation of   combined immunodeficiency. N Engl J Med 363:355–364, 2010.
                     alpha/beta  and  gamma/delta  T-cell  lineages  in  severe  combined  immunodeficiency.     94.  Gaspar HB, Cooray S, Gilmour KC, et al: Long-term persistence of a polyclonal T cell
                      N Engl J Med 349:1821–1828, 2003.                    repertoire after  gene therapy for X-linked  severe combined immunodeficiency.  Sci
                    63.  de Saint Basile G, Geissmann F, Flori E, et al: Severe combined immunodeficiency   Transl Med 3:97ra79, 2011.
                     caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest     95.  Hacein-Bey-Abina S, Garrigue A, Wang GP, et al: Insertional oncogenesis in 4 patients
                     114:1512–1517, 2004.                                  after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142, 2008.
                    64.  Rieux-Laucat F, Hivroz C, Lim A, et al: Inherited and somatic CD3zeta mutations in a     96.  Howe SJ, Mansour MR, Schwarzwaelder K, et al: Insertional mutagenesis combined
                     patient with T-cell deficiency. N Engl J Med 354:1913–1921, 2006.  with acquired somatic mutations causes leukemogenesis following gene therapy of
                    65.  Arnaiz-Villena A, Timon M, Corell A, et al: Brief report: Primary immunodeficiency   SCID-X1 patients. J Clin Invest 118:3143–3150, 2008.
                     caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte     97.  Hacein-Bey-Abina S, Pai SY, Gaspar HB: Improved gene therapy for X-linked severe
                     receptor. N Engl J Med 327:529–533, 1992.             combined immunodeficiency. N Engl J Med 371:1407–1417, 2014.
                    66.  Recio MJ, Moreno-Pelayo MA, Kilic SS, et al: Differential biological role of CD3 chains     98.  Omenn GS: Familial reticuloendotheliosis with eosinophilia. N Engl J Med 273:427–
                     revealed by human immunodeficiencies. J Immunol 178:2556–2564, 2007.  432, 1965.
                    67.  Morgan NV, Goddard S, Cardno TS, et al: Mutation in the TCRalpha subunit constant     99.  Signorini S, Imberti L, Pirovano S, et al: Intrathymic restriction and peripheral expan-
                     gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of   sion of the T-cell repertoire in Omenn syndrome. Blood 94:3468–3478, 1999.
                     TCRalphabeta+ T cells. J Clin Invest 121:695–702, 2011.    100. Villa A, Santagata S, Bozzi F, et al: Partial V(D)J recombination activity leads to Omenn
                    68.  Kung C, Pingel JT, Heikinheimo M, et al: Mutations in the tyrosine phosphatase CD45 gene   syndrome. Cell 93:885–896, 1998.
                     in a child with severe combined immunodeficiency disease. Nat Med 6:343–345, 2000.    101. Marrella V, Maina V, Villa A: Omenn syndrome does not live by V(D)J recombination
                    69.  Tchilian EZ, Wallace DL, Wells RS, et al: A deletion in the gene encoding the CD45   alone. Curr Opin Allergy Clin Immunol 11:525–531, 2011.
                     antigen in a patient with SCID. J Immunol 166:1308–1313, 2001.    102. Cavadini P, Vermi W, Facchetti F, et al: AIRE deficiency in thymus of 2 patients with
                    70.  Buckley RH, Schiff RI, Schiff SE, et al: Human severe combined immunodeficiency:   Omenn syndrome. J Clin Invest 115:728–732, 2005.
                     Genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr     103. Villa A, Marrella V, Rucci F, et al: Genetically determined lymphopenia and autoim-
                     130:378–387, 1997.                                    mune manifestations. Curr Opin Immunol 20:318–324, 2008.
                    71.  Yeganeh M, Heidarzade M, Pourpak Z, et al: Severe combined immunodeficiency: A     104. Villa A, Notarangelo LD, Roifman CM: Omenn syndrome: Inflammation in leaky
                     cohort of 40 patients. Pediatr Allergy Immunol 19:303–306, 2008.  severe combined immunodeficiency. J Allergy Clin Immunol 122:1082–1086, 2008.







          Kaushansky_chapter 80_p1211-1238.indd   1233                                                                  9/18/15   10:02 AM
   1253   1254   1255   1256   1257   1258   1259   1260   1261   1262   1263