Page 1260 - Williams Hematology ( PDFDrive )
P. 1260

1234  Part IX:  Lymphocytes and Plasma Cells                       Chapter 80:  Immunodeficiency Diseases            1235




                    168. Cohen AC, Nadeau KC, Tu W, et al: Cutting edge: Decreased accumulation and regu-    200.  Huang W, Na L, Fidel PL, et al: Requirement of interleukin-17A for systemic anti-Candida
                     latory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol   albicans host defense in mice. J Infect Dis 190:624–631, 2004.
                     177:2770–2774, 2006.                                 201. Gennery AR, Flood TJ, Abinun M, et al: Bone marrow transplantation does not correct
                    169. Hwa V, Nadeau K, Wit JM, et al: STAT5b deficiency: Lessons from STAT5b gene muta-  the hyper IgE syndrome. Bone Marrow Transplant 25:1303–1305, 2000.
                     tions. Best Pract Res Clin Endocrinol Metab 25:61–75, 2011.    202. Goussetis E, Peristeri I, Kitra V, et al: Successful long-term immunologic reconstitution
                    170. Liu L, Okada S, Kong XF, et al: Gain-of-function human STAT1 mutations impair IL-17   by allogeneic hematopoietic stem cell transplantation cures patients with autosomal
                     immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648,   dominant hyper-IgE syndrome. J Allergy Clin Immunol 126:392–394, 2010.
                     2011.                                                203. Bittner TC, Pannicke U, Renner ED, et al: Successful long-term correction of autosomal
                    171. Uzel G, Sampaio EP, Lawrence MG, et al: Dominant gain-of-function STAT1 mutations in   recessive hyper-IgE syndrome due to DOCK8 deficiency by hematopoietic stem cell
                     FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like   transplantation. Klin Padiatr 222:351–355, 2010.
                     syndrome. J Allergy Clin Immunol 131:1611–1623, 2013.    204. Minegishi Y, Saito M, Morio T, et al: Human tyrosine kinase 2 deficiency reveals its
                    172. Flanagan SE, Haapaniemi E, Russell MA, et al: Activating germline mutations in STAT3   requisite roles in multiple cytokine signals involved in innate and acquired immunity.
                     cause early-onset multi-organ autoimmune disease. Nat Genet 46:812–814, 2014.  Immunity 25:745–755, 2006.
                    173. Krummel MF, Allison JP: CD28 and CTLA-4 have opposing effects on the response of     205. McKusick VA, Eldridge R, Hostetler JA, et al: Dwarfism in the Amish. II. Cartilage-hair
                     T cells to stimulation. J Exp Med 182:459–465, 1995.  hypoplasia. Bull Johns Hopkins Hosp 116:285–326, 1965.
                    174. Kuehn HS, Ouyang W, Lo B, et al: Immune dysregulation in human subjects with hete-    206. Notarangelo LD, Roifman CM, Giliani S: Cartilage-hair hypoplasia: Molecular basis
                     rozygous germline mutations in CTLA4. Science 345:1623–1627, 2014.  and heterogeneity of the immunological phenotype. Curr Opin Allergy Clin Immunol
                    175. Lohr NJ, Molleston JP, Strauss KA, et al: Human ITCH E3 ubiquitin ligase deficiency   8:534–539, 2008.
                     causes syndromic multisystem autoimmune disease.  Am  J  Hum  Genet 86:447–453,     207.  Ridanpaa M, van Eenennaam H, Pelin K, et al: Mutations in the RNA component of RNase
                     2010.                                                 MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104:195–203, 2001.
                    176. Venuprasad K: Cbl-b and itch: Key regulators of peripheral T-cell tolerance. Cancer Res     208. de la Fuente MA, Recher M, Rider NL, et al: Reduced thymic output, cell cycle abnor-
                     70:3009–3012, 2010.                                   malities,  and increased  apoptosis  of  T  lymphocytes  in  patients  with  cartilage-hair
                    177. Ahonen P, Myllarniemi S, Sipila I, et al: Clinical variation of autoimmune polyendo-  hypoplasia. J Allergy Clin Immunol 128:139–146, 2011.
                     crinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients.     209. Kavadas FD, Giliani S, Gu Y, et al: Variability of clinical and laboratory features among
                     N Engl J Med 322:1829–1836, 1990.                     patients with ribonuclease mitochondrial RNA processing endoribonuclease gene
                    178. Anderson MS, Venanzi ES, Klein L, et al: Projection of an immunological self shadow   mutations. J Allergy Clin Immunol 122:1178–1184, 2008.
                     within the thymus by the aire protein. Science 298:1395–1401, 2002.    210. Guggenheim R, Somech R, Grunebaum E, et al: Bone marrow transplantation for cartilage-
                    179. Kont V, Laan M, Kisand K, et al: Modulation of Aire regulates the expression of tissue-   hair-hypoplasia. Bone Marrow Transplant 38:751–756, 2006.
                     restricted antigens. Mol Immunol 45:25–33, 2008.     211. Boerkoel CF, Takashima H, John J, et al: Mutant chromatin remodeling protein SMAR-
                    180. Meager A, Visvalingam K, Peterson P, et al: Anti-interferon autoantibodies in autoim-  CAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 30:215–220, 2002.
                     mune polyendocrinopathy syndrome type 1. PLoS Med 3:e289, 2006.    212. Deguchi K, Clewing JM, Elizondo LI, et al: Neurologic phenotype of Schimke immu-
                    181. Puel A, Doffinger R, Natividad A, et al: Autoantibodies against IL-17A, IL-17F, and   no-osseous dysplasia and neurodevelopmental expression of SMARCAL1.  J Neuro-
                     IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendo-  pathol Exp Neurol 67:565–577, 2008.
                     crine syndrome type I. J Exp Med 207:291–297, 2010.    213. Boerkoel CF, O’Neill S, Andre JL, et al: Manifestations and treatment of Schimke
                    182. Fleisher TA, Rieux-Laucat F, Puck JM: Autoimmune lymphoproliferative syndrome, in   immuno-osseous dysplasia: 14 new cases and a review of the literature. Eur J Pediatr
                     Primary Immunodeficiency Diseases, A Molecular and Genetic Approach, 3rd ed, edited   159:1–7, 2000.
                     by Ochs HD, Smith CIE, Puck JM, p 368. Oxford University Press, New York, 2014.    214. Gorlin RJ, Gelb B, Diaz GA, et al: WHIM syndrome, an autosomal dominant disorder:
                    183. Teachey DT, Greiner R, Seif A, et al: Treatment with sirolimus results in complete   Clinical, hematological, and molecular studies. Am J Med Genet 91:368–376, 2000.
                     responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol     215. Hernandez PA, Gorlin RJ, Lukens JN, et al: Mutations in the chemokine receptor gene
                     145:101–106, 2009.                                    CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease.
                    184. Ochs HD, Notarangelo L: Wiskott-Aldrich syndrome, in Primary Immunodeficiency   Nat Genet 34:70–74, 2003.
                     Diseases, A Molecular and Genetic Approach, 3rd ed, edited by Ochs HD, Smith CIE,     216. Tassone L, Notarangelo LD, Bonomi V, et al: Clinical and genetic diagnosis of warts,
                     Puck JM, p 454. Oxford University Press, New York, 2014.  hypogammaglobulinemia, infections, and myelokathexis syndrome in 10 patients.
                    185. Albert MH, Bittner TC, Nonoyama S, et al: X-linked thrombocytopenia (XLT) due to   J Allergy Clin Immunol 123:1170–1173, 1173 e1–e3, 2009.
                     WAS mutations: Clinical characteristics, long-term outcome, and treatment options.     217. Sanmun D, Garwicz D, Smith CI, et al: Stromal-derived factor-1 abolishes constitutive
                     Blood 115:3231–3238, 2010.                            apoptosis of WHIM syndrome neutrophils harbouring a truncating CXCR4 mutation.
                    186. Ancliff PJ, Blundell MP, Cory GO, et al: Two novel activating mutations in the Wiskott-Al-  Br J Haematol 134:640–644, 2006.
                     drich syndrome protein result in congenital neutropenia. Blood 108:2182–2189, 2006.    218. Mc Guire PJ, Cunningham-Rundles C, Ochs H, et al: Oligoclonality, impaired class switch
                    187. Moratto D, Giliani S, Bonfim C, et al: Long-term outcome and lineage-specific chi-  and B-cell memory responses in WHIM syndrome. Clin Immunol 135:412–421, 2010.
                     merism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell     219. Wegner R-D, German JJ, Chrzanowska KH, et al: Chromosomal instability syndromes
                     transplantation in the period 1980–2009: An international collaborative study. Blood   other than ataxia-telangiectasia, in Primary Immunodeficiency Diseases, A Molecular
                     118:1675–1684, 2011.                                  and Genetic Approach, 3rd ed, edited by Ochs HD, Smith CIE, Puck JM, p 632. Oxford
                    188. Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, et al: Long-term outcome following   University Press, New York, 2014.
                     hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: Collaborative     220. Yel L, Lavin MF, Shiloh Y: Ataxia-telangiectasia, in Primary Immunodeficiency Diseases,
                     study of the European Society for Immunodeficiencies and European Group for Blood   A Molecular and Genetic Approach, 3rd ed, edited by Ochs HD, Smith CIE, Puck JM, p
                     and Marrow Transplantation. Blood 111:439–445, 2008.  602. Oxford University Press, New York, 2014.
                    189. Lanzi G, Moratto D, Vairo D, et al: A novel primary human immunodeficiency due to     221. Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, et al: Immunodeficiency and infec-
                     deficiency in the WASP-interacting protein WIP. J Exp Med 209:29–34, 2012.  tions in ataxia-telangiectasia. J Pediatr 144:505–511, 2004.
                    190. Grimbacher B, Holland SM, Gallin JI, et al: Hyper-IgE syndrome with recurrent infections—    222. Savitsky K, Bar-Shira A, Gilad S, et al: A single ataxia telangiectasia gene with a product
                     An autosomal dominant multisystem disorder. N Engl J Med 340:692–702, 1999.  similar to PI-3 kinase. Science 268:1749–1753, 1995.
                    191. Davis SD, Schaller J, Wedgwood RJ: Job’s syndrome. Recurrent, “cold,” staphylococcal     223. Pandita TK: The role of ATM in telomere structure and function. Radiat Res 156:642–
                     abscesses. Lancet 1:1013–1015, 1966.                  647, 2001.
                    192. Buckley RH, Wray BB, Belmaker EZ: Extreme hyperimmunoglobulinemia E and undue     224. Klein C, Wenning GK, Quinn NP, et al: Ataxia without telangiectasia masquerading as
                     susceptibility to infection. Pediatrics 49:59–70, 1972.  benign hereditary chorea. Mov Disord 11:217–220, 1996.
                    193. Grimbacher B, Schaffer AA, Holland SM, et al: Genetic linkage of hyper-IgE syndrome     225. Stewart GS, Maser RS, Stankovic T, et al: The DNA double-strand break repair gene
                     to chromosome 4. Am J Hum Genet 65:735–744, 1999.     hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder.  Cell
                    194. Borges WG, Hensley T, Carey JC, et al: The face of Job. J Pediatr 133:303–305, 1998.  99:577–587, 1999.
                    195. Meyer-Bahlburg A, Renner ED, Rylaarsdam S, et al: Heterozygous signal transducer     226. Chrzanowska KH, Gregorek H, Dembowska-Baginska B, et al: Nijmegen breakage syn-
                     and activator of transcription 3 mutations in hyper-IgE syndrome result in altered   drome (NBS). Orphanet J Rare Dis 7:13, 2012.
                     B-cell maturation. J Allergy Clin Immunol 129:559–562, 562 e1–e2, 2012.    227. Albert MH, Gennery AR, Greil J, et al: Successful SCT for Nijmegen breakage syn-
                    196. Renner ED, Torgerson TR, Rylaarsdam S, et al: STAT3 mutation in the original patient   drome. Bone Marrow Transplant 45:622–626, 2010.
                     with Job’s syndrome. N Engl J Med 357:1667–1668, 2007.    228. de Saint Basile G, Menasche G, Fischer A: Molecular mechanisms of biogenesis and
                    197. Holland SM, DeLeo FR, Elloumi HZ, et al: STAT3 mutations in the hyper-IgE syn-  exocytosis of cytotoxic granules. Nat Rev Immunol 10:568–579, 2010.
                     drome. N Engl J Med 357:1608–1619, 2007.             229. Chandrakasan S, Filipovich AH: Hemophagocytic lymphohistiocytosis: Advances in
                    198. Minegishi Y, Saito M, Tsuchiya S, et al: Dominant-negative mutations in the DNA-bind-  pathophysiology, diagnosis, and treatment. J Pediatr 163:1253–1259, 2013.
                     ing domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062, 2007.    230. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al: Perforin gene defects in familial
                    199. Renner ED, Rylaarsdam S, Anover-Sombke S, et al: Novel signal transducer and acti-  hemophagocytic lymphohistiocytosis. Science 286:1957–1959, 1999.
                     vator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and vari-    231. Feldmann J, Callebaut I, Raposo G, et al: Munc13–4 is essential for cytolytic gran-
                     ably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol   ules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis
                     122:181–187, 2008.                                    (FHL3). Cell 115:461–473, 2003.







          Kaushansky_chapter 80_p1211-1238.indd   1235                                                                  9/18/15   10:02 AM
   1255   1256   1257   1258   1259   1260   1261   1262   1263   1264   1265