Page 1388 - Williams Hematology ( PDFDrive )
P. 1388
1362 Part X: Malignant Myeloid Diseases Chapter 87: Myelodysplastic Syndromes 1363
40. Hasle H, Niemeyer CM, Chessells JM, et al: A pediatric approach to the WHO classi- 71. Anastasi J, Feng J, Le Beau MM, et al: Cytogenetic clonality in myelodysplastic syn-
fication of myelodysplastic and myeloproliferative diseases. Leukemia 17(2):277–282, dromes studied with fluorescence in situ hybridization: Lineage, response to growth
2003. factor therapy, and clone expansion. Blood 81(6):1580–1585, 1993.
41. Sasaki H, Manabe A, Kojima S, et al: Myelodysplastic syndrome in childhood: A retro- 72. Gerritsen WR, Donohue J, Bauman J, et al: Clonal analysis of myelodysplastic syn-
spective study of 189 patients in Japan. Leukemia 15(11):1713–1720, 2001. drome-monosomy-7 is expressed in the myeloid lineage, but not in the lymphoid lin-
42. Hyde RK, Liu PP: GATA2 mutations lead to MDS and AML. Nat Genet 43(10):926–927, eage as detected by fluorescent in situ hybridization. Blood 80(1):217–224, 1992.
2011. 73. Will B, Steidl U: Combinatorial haplo-deficient tumor suppression in 7q-deficient mye-
43. Owen CJ, Toze CL, Koochin A, et al: Five new pedigrees with inherited RUNX1 muta- lodysplastic syndrome and acute myeloid leukemia. Cancer Cell 25(5):555–557, 2014.
tions causing familial platelet disorder with propensity to myeloid malignancy. Blood 74. Jerez A, Gondek LP, Jankowska AM, et al: Topography, clinical, and genomic correlates
112(12):4639–4645, 2008. of 5q myeloid malignancies revisited. J Clin Oncol 30(12):1343–1349, 2012.
44. Song WJ, Sullivan MG, Legare RD, et al: Haploinsufficiency of CBFA2 causes famil- 75. Graubert TA, Payton MA, Shao J, et al: Integrated genomic analysis implicates haplo-
ial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat insufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syn-
Genet 23(2):166–175, 1999. dromes pathogenesis. PLoS One 4(2):e4583, 2009.
45. Bagby GC, Lipton JM, Sloand EM, Schiffer CA: Marrow failure. Hematology Am Soc 76. Ebert BL, Pretz J, Bosco J, et al: Identification of RPS14 as a 5q– syndrome gene by RNA
Hematol Educ Program 318–336, 2004. interference screen. Nature 451(7176):335–339, 2008.
46. Alter BP, Giri N, Savage SA, et al: Malignancies and survival patterns in the National 77. Dutt S, Narla A, Lin K, et al: Haploinsufficiency for ribosomal protein genes causes
Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol selective activation of p53 in human erythroid progenitor cells. Blood 117(9):
150(2):179–188, 2010. 2567–2576, 2011.
47. Kelaidi C, Stamatoullas A, Beyne-Rauzy O, et al: Daily practice management of myelo- 78. Boultwood J, Pellagatti A, Wainscoat JS: Haploinsufficiency of ribosomal proteins and
dysplastic syndromes in France: Data from 907 patients in a one-week cross-sectional p53 activation in anemia: Diamond-Blackfan anemia and the 5q– syndrome. Adv Biol
study by the Groupe Francophone des Myelodysplasies. Haematologica 95(6):892–899, Regul 52(1):196–203, 2012.
2010. 79. Caceres G, McGraw K, Yip BH, et al: TP53 suppression promotes erythropoiesis in
48. Nisse C, Haguenoer JM, Grandbastien B, et al: Occupational and environmental del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant
risk factors of the myelodysplastic syndromes in the North of France. Br J Haematol patients. Proc Natl Acad Sci U S A 110(40):16127–16132, 2013.
112(4):927–935, 2001. 80. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al: Identification of miR-145 and
49. Yin SN, Hayes RB, Linet MS, et al: A cohort study of cancer among benzene-exposed miR-146a as mediators of the 5q– syndrome phenotype. Nat Med 16(1):49–58, 2010.
workers in China: Overall results. Am J Ind Med 29(3):227–235, 1996. 81. Kumar MS, Narla A, Nonami A, et al: Coordinate loss of a microRNA and protein-
50. Lv L, Lin G, Gao X, et al: Case-control study of risk factors of myelodysplastic syn- coding gene cooperate in the pathogenesis of 5q– syndrome. Blood 118(17):4666–4673,
dromes according to World Health Organization classification in a Chinese population. 2011.
Am J Hematol 86(2):163–169, 2011. 82. Starczynowski DT, Kuchenbauer F, Wegrzyn J, et al: MicroRNA-146a disrupts hemato-
51. Rushton L, Schnatter AR, Tang G, Glass DC: Acute myeloid and chronic lymphoid poietic differentiation and survival. Exp Hematol 39(2):167–178 e164, 2011.
leukaemias and exposure to low-level benzene among petroleum workers. Br J Cancer 83. Chen TH, Kambal A, Krysiak K, et al: Knockdown of Hspa9, a del(5q31.2) gene, results
110(3):783–787, 2014. in a decrease in hematopoietic progenitors in mice. Blood 117(5):1530–1539, 2011.
52. Strom SS, Gu Y, Gruschkus SK, et al: Risk factors of myelodysplastic syndromes: A case- 84. Craven SE, French D, Ye W, et al: Loss of Hspa9b in zebrafish recapitulates the ineffec-
control study. Leukemia 19(11):1912–1918, 2005. tive hematopoiesis of the myelodysplastic syndrome. Blood 105(9):3528–3534, 2005.
53. Hahn CN, Chong CE, Carmichael CL, et al: Heritable GATA2 mutations associated 85. Joslin JM, Fernald AA, Tennant TR, et al: Haploinsufficiency of EGR1, a candidate gene
with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet in the del(5q), leads to the development of myeloid disorders. Blood 110(2):719–726,
43(10):1012–1017, 2011. 2007.
54. Horwitz MS: GATA2 deficiency: Flesh and blood. Blood 123(6):799–800, 2014. 86. Stoddart A, Fernald AA, Wang J, et al: Haploinsufficiency of del(5q) genes, Egr1
55. Holme H, Hossain U, Kirwan M, et al: Marked genetic heterogeneity in familial myelo- and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood
dysplasia/acute myeloid leukaemia. Br J Haematol 158(2):242–248, 2012. 123(7):1069–1078, 2014.
56. Pasquet M, Bellanne-Chantelot C, Tavitian S, et al: High frequency of GATA2 muta- 87. Jaras M, Miller PG, Chu LP, et al: Csnk1a1 inhibition has p53-dependent therapeutic
tions in patients with mild chronic neutropenia evolving to MonoMac syndrome, mye- efficacy in acute myeloid leukemia. J Exp Med 211(4):605–612, 2014.
lodysplasia, and acute myeloid leukemia. Blood 121(5):822–829, 2013. 88. Schanz J, Steidl C, Fonatsch C, et al: Coalesced multicentric analysis of 2,351 patients
57. Kazenwadel J, Secker GA, Liu YJ, et al: Loss-of-function germline GATA2 mutations in with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenet-
patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a ics of myelodysplastic syndromes in the international prognostic scoring system. J Clin
key role for GATA2 in the lymphatic vasculature. Blood 119(5):1283–1291, 2012. Oncol 29(15):1963–1970, 2011.
58. Hsu AP, Sampaio EP, Khan J, et al: Mutations in GATA2 are associated with the autoso- 89. Andersen MK, Christiansen DH, Pedersen-Bjergaard J: Centromeric breakage and
mal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) highly rearranged chromosome derivatives associated with mutations of TP53 are
syndrome. Blood 118(10):2653–2655, 2011. common in therapy-related MDS and AML after therapy with alkylating agents: An
59. Hirabayashi S, Strahm B, Urbaniak S, et al: Unexpected high frequency of GATA2 M-FISH study. Genes Chromosomes Cancer 42(4):358–371, 2005.
mutations in children with non-familial MDS and monosomy 7. ASH Annu Meet Abstr 90. Papaemmanuil E, Gerstung M, Malcovati L, et al: Clinical and biological implications
120(21): Abstract no. 1699, 2012. of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627, 2013.
60. Vas V, Senger K, Dorr K, et al: Aging of the microenvironment influences clonality in 91. Volkert S, Kohlmann A, Schnittger S, et al: Association of the type of 5q loss with com-
hematopoiesis. PLoS One 7(8):e42080, 2012. plex karyotype, clonal evolution, TP53 mutation status, and prognosis in acute myeloid
61. Henry CJ, Marusyk A, DeGregori J: Aging-associated changes in hematopoiesis and leukemia and myelodysplastic syndrome. Genes Chromosomes Cancer 3(10):22151,
leukemogenesis: What’s the connection? Aging (Albany NY) 3(6):643–656, 2011. 2014.
62. Woll PS, Kjallquist U, Chowdhury O, et al: Myelodysplastic syndromes are propagated 92. Christiansen DH, Andersen MK, Pedersen-Bjergaard J: Mutations with loss of hete-
by rare and distinct human cancer stem cells in vivo. Cancer Cell 25(6):794–808, 2014. rozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid
63. Raskind WH, Tirumali N, Jacobson R, Singer J, Fialkow PJ: Evidence for a multistep leukemia after exposure to alkylating agents and significantly associated with deletion
pathogenesis of a myelodysplastic syndrome. Blood 63(6):1318–1323, 1984. or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 19(5):1405–1413,
64. Abkowitz JL, Fialkow PJ, Niebrugge DJ, et al: Pancytopenia as a clonal disorder of a 2001.
multipotent hematopoietic stem-cell. J Clin Invest 73(1):258–261, 1984. 93. Jadersten M, Saft L, Smith A, et al: TP53 mutations in low-risk myelodysplastic syn-
65. Mongkonsritragoon W, Letendre L, Li CY: Multiple lymphoid nodules in bone marrow dromes with del(5q) predict disease progression. J Clin Oncol 29(15):1971–1979, 2011.
have the same clonality as underlying myelodysplastic syndrome recognized with fluo- 94. Jadersten M, Saft L, Pellagatti A, et al: Clonal heterogeneity in the 5q– syndrome: P53
rescent in situ hybridization technique. Am J Hematol 59(3):252–257, 1998. expressing progenitors prevail during lenalidomide treatment and expand at disease
66. Tehranchi R, Woll PS, Anderson K, et al: Persistent malignant stem cells in del(5q) progression. Haematologica 94(12):1762–1766, 2009.
myelodysplasia in remission. N Engl J Med 363(11):1025–1037, 2010. 95. Saft L, Karimi M, Ghaderi M, et al: P53 protein expression independently predicts out-
67. Damm F, Fontenay M, Bernard OA: Point mutations in myelodysplastic syndromes. N come in patients with lower-risk myelodysplastic syndromes with del(5q). Haematolog-
Engl J Med 365(12):1154–1155, 2011. ica 99(6):1041–1049, 2014.
68. Vercauteren SM, Starczynowski DT, Sung S, et al: T cells of patients with myelodys- 96. Cordoba I, Gonzalez-Porras JR, Nomdedeu B, et al: Better prognosis for patients with
plastic syndrome are frequently derived from the malignant clone. Br J Haematol del(7q) than for patients with monosomy 7 in myelodysplastic syndrome. Cancer
156(3):409–412, 2012. 118(1):127–133, 2012.
69. Nilsson L, Astrand-Grundstrom I, Arvidsson I, et al: Isolation and characterization of 97. Tosi S, Scherer SW, Giudici G, et al: Delineation of multiple deleted regions in 7q in
hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: Evi- myeloid disorders. Genes Chromosomes Cancer 25(4):384–392, 1999.
dence for involvement at the hematopoietic stem cell level. Blood 96(6):2012–2021, 98. Le Beau MM, Espinosa R 3rd, Davis EM, et al: Cytogenetic and molecular delineation
2000. of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood
70. van Lom K, Hagemeijer A, Smit E, et al: Cytogenetic clonality analysis in myelodysplas- 88(6):1930–1935, 1996.
tic syndrome: Monosomy 7 can be demonstrated in the myeloid and in the lymphoid 99. Lewis S, Abrahamson G, Boultwood J, et al: Molecular characterization of the 7q dele-
lineage. Leukemia 9(11):1818–1821, 1995. tion in myeloid disorders. Br J Haematol 93(1):75–80, 1996.
Kaushansky_chapter 87_p1341-1372.indd 1363 9/21/15 11:06 AM

