Page 1388 - Williams Hematology ( PDFDrive )
P. 1388

1362  Part X:  Malignant Myeloid Diseases                           Chapter 87:  Myelodysplastic Syndromes           1363




                    40.  Hasle H, Niemeyer CM, Chessells JM, et al: A pediatric approach to the WHO classi-    71.  Anastasi J, Feng J, Le Beau MM, et al: Cytogenetic clonality in myelodysplastic syn-
                     fication of myelodysplastic and myeloproliferative diseases. Leukemia 17(2):277–282,   dromes studied with fluorescence in situ hybridization: Lineage, response to growth
                     2003.                                                 factor therapy, and clone expansion. Blood 81(6):1580–1585, 1993.
                    41.  Sasaki H, Manabe A, Kojima S, et al: Myelodysplastic syndrome in childhood: A retro-    72.  Gerritsen WR, Donohue J, Bauman J, et al: Clonal analysis of myelodysplastic syn-
                     spective study of 189 patients in Japan. Leukemia 15(11):1713–1720, 2001.  drome-monosomy-7 is expressed in the myeloid lineage, but not in the lymphoid lin-
                    42.  Hyde RK, Liu PP: GATA2 mutations lead to MDS and AML. Nat Genet 43(10):926–927,   eage as detected by fluorescent in situ hybridization. Blood 80(1):217–224, 1992.
                     2011.                                                73.  Will B, Steidl U: Combinatorial haplo-deficient tumor suppression in 7q-deficient mye-
                    43.  Owen CJ, Toze CL, Koochin A, et al: Five new pedigrees with inherited RUNX1 muta-  lodysplastic syndrome and acute myeloid leukemia. Cancer Cell 25(5):555–557, 2014.
                     tions causing familial platelet disorder with propensity to myeloid malignancy. Blood     74.  Jerez A, Gondek LP, Jankowska AM, et al: Topography, clinical, and genomic correlates
                     112(12):4639–4645, 2008.                              of 5q myeloid malignancies revisited. J Clin Oncol 30(12):1343–1349, 2012.
                    44.  Song WJ, Sullivan MG, Legare RD, et al: Haploinsufficiency of CBFA2 causes famil-    75.  Graubert TA, Payton MA, Shao J, et al: Integrated genomic analysis implicates haplo-
                     ial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat   insufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syn-
                     Genet 23(2):166–175, 1999.                            dromes pathogenesis. PLoS One 4(2):e4583, 2009.
                    45.  Bagby GC, Lipton JM, Sloand EM, Schiffer CA: Marrow failure. Hematology Am Soc     76.  Ebert BL, Pretz J, Bosco J, et al: Identification of RPS14 as a 5q– syndrome gene by RNA
                     Hematol Educ Program 318–336, 2004.                   interference screen. Nature 451(7176):335–339, 2008.
                    46.  Alter BP, Giri N, Savage SA, et al: Malignancies and survival patterns in the National     77.  Dutt S, Narla A, Lin K, et al: Haploinsufficiency for ribosomal protein genes causes
                     Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol   selective activation of p53 in human erythroid progenitor cells.  Blood 117(9):
                     150(2):179–188, 2010.                                 2567–2576, 2011.
                    47.  Kelaidi C, Stamatoullas A, Beyne-Rauzy O, et al: Daily practice management of myelo-    78.  Boultwood J, Pellagatti A, Wainscoat JS: Haploinsufficiency of ribosomal proteins and
                     dysplastic syndromes in France: Data from 907 patients in a one-week cross-sectional   p53 activation in anemia: Diamond-Blackfan anemia and the 5q– syndrome. Adv Biol
                     study by the Groupe Francophone des Myelodysplasies. Haematologica 95(6):892–899,   Regul 52(1):196–203, 2012.
                     2010.                                                79.  Caceres G, McGraw K, Yip BH, et al: TP53 suppression promotes erythropoiesis in
                    48.  Nisse C, Haguenoer JM, Grandbastien B, et al: Occupational and environmental   del(5q)  MDS,  suggesting  a  targeted  therapeutic  strategy  in  lenalidomide-resistant
                     risk factors of the myelodysplastic syndromes in the North of France. Br J Haematol   patients. Proc Natl Acad Sci U S A 110(40):16127–16132, 2013.
                     112(4):927–935, 2001.                                80.  Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al: Identification of miR-145 and
                    49.  Yin SN, Hayes RB, Linet MS, et al: A cohort study of cancer among benzene-exposed   miR-146a as mediators of the 5q– syndrome phenotype. Nat Med 16(1):49–58, 2010.
                     workers in China: Overall results. Am J Ind Med 29(3):227–235, 1996.    81.  Kumar MS, Narla A, Nonami A, et al: Coordinate loss of a microRNA and protein-
                    50.  Lv L, Lin G, Gao X, et al: Case-control study of risk factors of myelodysplastic syn-  coding gene cooperate in the pathogenesis of 5q– syndrome. Blood 118(17):4666–4673,
                     dromes according to World Health Organization classification in a Chinese population.   2011.
                     Am J Hematol 86(2):163–169, 2011.                    82.  Starczynowski DT, Kuchenbauer F, Wegrzyn J, et al: MicroRNA-146a disrupts hemato-
                    51.  Rushton L, Schnatter AR, Tang G, Glass DC: Acute myeloid and chronic lymphoid   poietic differentiation and survival. Exp Hematol 39(2):167–178 e164, 2011.
                     leukaemias and exposure to low-level benzene among petroleum workers. Br J Cancer     83.  Chen TH, Kambal A, Krysiak K, et al: Knockdown of Hspa9, a del(5q31.2) gene, results
                     110(3):783–787, 2014.                                 in a decrease in hematopoietic progenitors in mice. Blood 117(5):1530–1539, 2011.
                    52.  Strom SS, Gu Y, Gruschkus SK, et al: Risk factors of myelodysplastic syndromes: A case-    84.  Craven SE, French D, Ye W, et al: Loss of Hspa9b in zebrafish recapitulates the ineffec-
                     control study. Leukemia 19(11):1912–1918, 2005.       tive hematopoiesis of the myelodysplastic syndrome. Blood 105(9):3528–3534, 2005.
                    53.  Hahn CN, Chong CE, Carmichael CL, et al: Heritable GATA2 mutations associated     85.  Joslin JM, Fernald AA, Tennant TR, et al: Haploinsufficiency of EGR1, a candidate gene
                     with  familial  myelodysplastic  syndrome  and  acute  myeloid  leukemia.  Nat Genet   in the del(5q), leads to the development of myeloid disorders. Blood 110(2):719–726,
                     43(10):1012–1017, 2011.                               2007.
                    54.  Horwitz MS: GATA2 deficiency: Flesh and blood. Blood 123(6):799–800, 2014.    86.  Stoddart A, Fernald AA, Wang J, et al: Haploinsufficiency of del(5q) genes, Egr1
                    55.  Holme H, Hossain U, Kirwan M, et al: Marked genetic heterogeneity in familial myelo-  and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood
                     dysplasia/acute myeloid leukaemia. Br J Haematol 158(2):242–248, 2012.  123(7):1069–1078, 2014.
                    56.  Pasquet M, Bellanne-Chantelot C, Tavitian S, et al: High frequency of GATA2 muta-    87.  Jaras M, Miller PG, Chu LP, et al: Csnk1a1 inhibition has p53-dependent therapeutic
                     tions in patients with mild chronic neutropenia evolving to MonoMac syndrome, mye-  efficacy in acute myeloid leukemia. J Exp Med 211(4):605–612, 2014.
                     lodysplasia, and acute myeloid leukemia. Blood 121(5):822–829, 2013.    88.  Schanz J, Steidl C, Fonatsch C, et al: Coalesced multicentric analysis of 2,351 patients
                    57.  Kazenwadel J, Secker GA, Liu YJ, et al: Loss-of-function germline GATA2 mutations in   with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenet-
                     patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a   ics of myelodysplastic syndromes in the international prognostic scoring system. J Clin
                     key role for GATA2 in the lymphatic vasculature. Blood 119(5):1283–1291, 2012.  Oncol 29(15):1963–1970, 2011.
                    58.  Hsu AP, Sampaio EP, Khan J, et al: Mutations in GATA2 are associated with the autoso-    89.  Andersen  MK,  Christiansen  DH,  Pedersen-Bjergaard  J:  Centromeric  breakage  and
                     mal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC)   highly rearranged chromosome derivatives associated with mutations of TP53 are
                     syndrome. Blood 118(10):2653–2655, 2011.              common in therapy-related MDS and AML after therapy with alkylating agents: An
                    59.  Hirabayashi S, Strahm B, Urbaniak S, et al: Unexpected high frequency of GATA2   M-FISH study. Genes Chromosomes Cancer 42(4):358–371, 2005.
                     mutations in children with non-familial MDS and monosomy 7. ASH Annu Meet Abstr     90.  Papaemmanuil E, Gerstung M, Malcovati L, et al: Clinical and biological implications
                     120(21): Abstract no. 1699, 2012.                     of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627, 2013.
                    60.  Vas V, Senger K, Dorr K, et al: Aging of the microenvironment influences clonality in     91.  Volkert S, Kohlmann A, Schnittger S, et al: Association of the type of 5q loss with com-
                     hematopoiesis. PLoS One 7(8):e42080, 2012.            plex karyotype, clonal evolution, TP53 mutation status, and prognosis in acute myeloid
                    61.  Henry CJ, Marusyk A, DeGregori J: Aging-associated changes in hematopoiesis and   leukemia and myelodysplastic syndrome.  Genes Chromosomes Cancer 3(10):22151,
                     leukemogenesis: What’s the connection? Aging (Albany NY) 3(6):643–656, 2011.  2014.
                    62.  Woll PS, Kjallquist U, Chowdhury O, et al: Myelodysplastic syndromes are propagated     92.  Christiansen DH, Andersen MK, Pedersen-Bjergaard J: Mutations with loss of hete-
                     by rare and distinct human cancer stem cells in vivo. Cancer Cell 25(6):794–808, 2014.  rozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid
                    63.  Raskind WH, Tirumali N, Jacobson R, Singer J, Fialkow PJ: Evidence for a multistep   leukemia after exposure to alkylating agents and significantly associated with deletion
                     pathogenesis of a myelodysplastic syndrome. Blood 63(6):1318–1323, 1984.  or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 19(5):1405–1413,
                    64.  Abkowitz JL, Fialkow PJ, Niebrugge DJ, et al: Pancytopenia as a clonal disorder of a   2001.
                     multipotent hematopoietic stem-cell. J Clin Invest 73(1):258–261, 1984.    93.  Jadersten M, Saft L, Smith A, et al: TP53 mutations in low-risk myelodysplastic syn-
                    65.  Mongkonsritragoon W, Letendre L, Li CY: Multiple lymphoid nodules in bone marrow   dromes with del(5q) predict disease progression. J Clin Oncol 29(15):1971–1979, 2011.
                     have the same clonality as underlying myelodysplastic syndrome recognized with fluo-    94.  Jadersten M, Saft L, Pellagatti A, et al: Clonal heterogeneity in the 5q– syndrome: P53
                     rescent in situ hybridization technique. Am J Hematol 59(3):252–257, 1998.  expressing progenitors prevail during lenalidomide treatment and expand at disease
                    66.  Tehranchi R, Woll PS, Anderson K, et al: Persistent malignant stem cells in del(5q)   progression. Haematologica 94(12):1762–1766, 2009.
                     myelodysplasia in remission. N Engl J Med 363(11):1025–1037, 2010.    95.  Saft L, Karimi M, Ghaderi M, et al: P53 protein expression independently predicts out-
                    67.  Damm F, Fontenay M, Bernard OA: Point mutations in myelodysplastic syndromes. N   come in patients with lower-risk myelodysplastic syndromes with del(5q). Haematolog-
                     Engl J Med 365(12):1154–1155, 2011.                   ica 99(6):1041–1049, 2014.
                    68.  Vercauteren SM, Starczynowski DT, Sung S, et al: T cells of patients with myelodys-    96.  Cordoba I, Gonzalez-Porras JR, Nomdedeu B, et al: Better prognosis for patients with
                     plastic syndrome are frequently derived from the malignant clone.  Br J Haematol   del(7q) than for patients with monosomy 7 in myelodysplastic syndrome.  Cancer
                     156(3):409–412, 2012.                                 118(1):127–133, 2012.
                    69.  Nilsson L, Astrand-Grundstrom I, Arvidsson I, et al: Isolation and characterization of     97.  Tosi S, Scherer SW, Giudici G, et al: Delineation of multiple deleted regions in 7q in
                     hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes:  Evi-  myeloid disorders. Genes Chromosomes Cancer 25(4):384–392, 1999.
                     dence for  involvement  at  the  hematopoietic  stem cell level.  Blood  96(6):2012–2021,     98.  Le Beau MM, Espinosa R 3rd, Davis EM, et al: Cytogenetic and molecular delineation
                     2000.                                                 of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood
                    70.  van Lom K, Hagemeijer A, Smit E, et al: Cytogenetic clonality analysis in myelodysplas-  88(6):1930–1935, 1996.
                     tic syndrome: Monosomy 7 can be demonstrated in the myeloid and in the lymphoid     99.  Lewis S, Abrahamson G, Boultwood J, et al: Molecular characterization of the 7q dele-
                     lineage. Leukemia 9(11):1818–1821, 1995.              tion in myeloid disorders. Br J Haematol 93(1):75–80, 1996.







          Kaushansky_chapter 87_p1341-1372.indd   1363                                                                  9/21/15   11:06 AM
   1383   1384   1385   1386   1387   1388   1389   1390   1391   1392   1393